Concepts of Modern Mathematics


Book Description

In this charming volume, a noted English mathematician uses humor and anecdote to illuminate the concepts of groups, sets, subsets, topology, Boolean algebra, and other mathematical subjects. 200 illustrations.




Basic Concepts in Modern Mathematics


Book Description

An in-depth overview of some of the most readily applicable essentials of modern mathematics, this concise volume is geared toward undergraduates of all backgrounds as well as future math majors. Topics include the natural numbers; sets, variables, and statement forms; mappings and operations; groups; relations and partitions; integers; and rational and real numbers. 1961 edition.




Fundamental Concepts of Mathematics


Book Description

Fundamental Concepts of Mathematics, 2nd Edition provides an account of some basic concepts in modern mathematics. The book is primarily intended for mathematics teachers and lay people who wants to improve their skills in mathematics. Among the concepts and problems presented in the book include the determination of which integral polynomials have integral solutions; sentence logic and informal set theory; and why four colors is enough to color a map. Unlike in the first edition, the second edition provides detailed solutions to exercises contained in the text. Mathematics teachers and people who want to gain a thorough understanding of the fundamental concepts of mathematics will find this book a good reference.




Elements of Modern Mathematics


Book Description

An unusually thoughtful and well-constructed introduction to the serious study of mathematics, this book requires no background beyond high school courses in plane geometry and elementary algebra. From that starting point, it is designed to lead readers willing to work through its exercises and problems to the achievement of basic mathematical literacy. The text provides a fundamental orientation in modern mathematics, an essential vocabulary of mathematical terms, and some facility in the use of mathematical concepts and symbols. From there, readers will be equipped to move on to more serious work, and they'll be well on the way to having the tools essential for work in the physical sciences, engineering, and the biological and social sciences. Starting with elementary treatments of algebra, logic, and set theory, the book advances to explorations of plane analytic geometry, relations and functions, numbers, and calculus. Subsequent chapters discuss probability, statistical inference, and abstract mathematical theories. Each section is enhanced with exercises in the text and problems at the end. Answers to the exercises and some of the problems are included at the end of each section.




Mathematical Concepts and Methods in Modern Biology


Book Description

Mathematical Concepts and Methods in Modern Biology offers a quantitative framework for analyzing, predicting, and modulating the behavior of complex biological systems. The book presents important mathematical concepts, methods and tools in the context of essential questions raised in modern biology.Designed around the principles of project-based learning and problem-solving, the book considers biological topics such as neuronal networks, plant population growth, metabolic pathways, and phylogenetic tree reconstruction. The mathematical modeling tools brought to bear on these topics include Boolean and ordinary differential equations, projection matrices, agent-based modeling and several algebraic approaches. Heavy computation in some of the examples is eased by the use of freely available open-source software. - Features self-contained chapters with real biological research examples using freely available computational tools - Spans several mathematical techniques at basic to advanced levels - Offers broad perspective on the uses of algebraic geometry/polynomial algebra in molecular systems biology




Introduction to Mathematical Thinking


Book Description

Examinations of arithmetic, geometry, and theory of integers; rational and natural numbers; complete induction; limit and point of accumulation; remarkable curves; complex and hypercomplex numbers; more. Includes 27 figures. 1959 edition.




Introduction to Modern Mathematics


Book Description

Introduction to Modern Mathematics focuses on the operations, principles, and methodologies involved in modern mathematics. The monograph first tackles the algebra of sets, natural numbers, and functions. Discussions focus on groups of transformations, composition of functions, an axiomatic approach to natural numbers, intersection of sets, axioms of the algebra of sets, fields of sets, prepositional functions of one variable, and difference of sets. The text then takes a look at generalized unions and intersections of sets, Cartesian products of sets, and equivalence relations. The book ponders on powers of sets, ordered sets, and linearly ordered sets. Topics include isomorphism of linearly ordered sets, dense linear ordering, maximal and minimal elements, quasi-ordering relations, inequalities for cardinal numbers, sets of the power of the continuum, and Cantor's theorem. The manuscript then examines elementary concepts of abstract algebras, functional calculus and its applications in mathematical proofs, and propositional calculus and its applications in mathematical proofs. The publication is a valuable reference for mathematicians and researchers interested in modern mathematics.




Modern Algebra


Book Description

Standard text provides an exceptionally comprehensive treatment of every aspect of modern algebra. Explores algebraic structures, rings and fields, vector spaces, polynomials, linear operators, much more. Over 1,300 exercises. 1965 edition.




The Nature and Growth of Modern Mathematics


Book Description

Now available in a one-volume paperback, this book traces the development of the most important mathematical concepts, giving special attention to the lives and thoughts of such mathematical innovators as Pythagoras, Newton, Poincare, and Godel. Beginning with a Sumerian short story--ultimately linked to modern digital computers--the author clearly introduces concepts of binary operations; point-set topology; the nature of post-relativity geometries; optimization and decision processes; ergodic theorems; epsilon-delta arithmetization; integral equations; the beautiful "ideals" of Dedekind and Emmy Noether; and the importance of "purifying" mathematics. Organizing her material in a conceptual rather than a chronological manner, she integrates the traditional with the modern, enlivening her discussions with historical and biographical detail.




5 Principles of the Modern Mathematics Classroom


Book Description

Students pursue problems they’re curious about, not problems they’re told to solve. Creating a math classroom filled with confident problem solvers starts by introducing challenges discovered in the real world, not by presenting a sequence of prescribed problems, says Gerald Aungst. In this groundbreaking book, he offers a thoughtful approach for instilling a culture of learning in your classroom through five powerful, yet straightforward principles: Conjecture, Collaboration, Communication, Chaos, and Celebration. Aungst shows you how to Embrace collaboration and purposeful chaos to help students engage in productive struggle, using non-routine and unsolved problems Put each chapter’s principles into practice through a variety of strategies, activities, and by incorporating technology tools Introduce substantive, lasting cultural changes in your classroom through a manageable, gradual shift in processes and behaviors Five Principles of the Modern Mathematics Classroom offers new ideas for inspiring math students by building a more engaging and collaborative learning environment. "Bravo! This book brings a conceptual framework for K-12 mathematics to life. As a parent and as the executive director of Edutopia, I commend Aungst for sharing his 5 principles. This is a perfect blend of inspiring and practical. Highly recommended!" Cindy Johanson, Executive Director, Edutopia George Lucas Educational Foundation "Aungst ignites the magic of mathematics by reminding us what makes mathematicians so passionate about their subject matter. Grounded in research, his work takes us on a journey into classrooms so that we may take away tips to put into practice today." Erin Klein, Teacher, Speaker, and Author of Redesigning Learning Spaces