Basic Topology


Book Description

In this broad introduction to topology, the author searches for topological invariants of spaces, together with techniques for their calculating. Students with knowledge of real analysis, elementary group theory, and linear algebra will quickly become familiar with a wide variety of techniques and applications involving point-set, geometric, and algebraic topology. Over 139 illustrations and more than 350 problems of various difficulties help students gain a thorough understanding of the subject.




Basic Topology


Book Description




Basic Topology 3


Book Description

This third of the three-volume book is targeted as a basic course in algebraic topology and topology for fiber bundles for undergraduate and graduate students of mathematics. It focuses on many variants of topology and its applications in modern analysis, geometry, and algebra. Topics covered in this volume include homotopy theory, homology and cohomology theories, homotopy theory of fiber bundles, Euler characteristic, and the Betti number. It also includes certain classic problems such as the Jordan curve theorem along with the discussions on higher homotopy groups and establishes links between homotopy and homology theories, axiomatic approach to homology and cohomology as inaugurated by Eilenberg and Steenrod. It includes more material than is comfortably covered by beginner students in a one-semester course. Students of advanced courses will also find the book useful. This book will promote the scope, power and active learning of the subject, all the while covering a wide range of theory and applications in a balanced unified way.




Topology


Book Description

A graduate-level textbook that presents basic topology from the perspective of category theory. This graduate-level textbook on topology takes a unique approach: it reintroduces basic, point-set topology from a more modern, categorical perspective. Many graduate students are familiar with the ideas of point-set topology and they are ready to learn something new about them. Teaching the subject using category theory--a contemporary branch of mathematics that provides a way to represent abstract concepts--both deepens students' understanding of elementary topology and lays a solid foundation for future work in advanced topics.




Recent Progress in General Topology III


Book Description

The book presents surveys describing recent developments in most of the primary subfields of General Topology, and its applications to Algebra and Analysis during the last decade, following the previous editions (North Holland, 1992 and 2002). The book was prepared in connection with the Prague Topological Symposium, held in 2011. During the last 10 years the focus in General Topology changed and therefore the selection of topics differs from that chosen in 2002. The following areas experienced significant developments: Fractals, Coarse Geometry/Topology, Dimension Theory, Set Theoretic Topology and Dynamical Systems.




Introduction to Topology


Book Description

Concise undergraduate introduction to fundamentals of topology — clearly and engagingly written, and filled with stimulating, imaginative exercises. Topics include set theory, metric and topological spaces, connectedness, and compactness. 1975 edition.




Basic Topology 1


Book Description

This first of the three-volume book is targeted as a basic course in topology for undergraduate and graduate students of mathematics. It studies metric spaces and general topology. It starts with the concept of the metric which is an abstraction of distance in the Euclidean space. The special structure of a metric space induces a topology that leads to many applications of topology in modern analysis and modern algebra, as shown in this volume. This volume also studies topological properties such as compactness and connectedness. Considering the importance of compactness in mathematics, this study covers the Stone–Cech compactification and Alexandroff one-point compactification. This volume also includes the Urysohn lemma, Urysohn metrization theorem, Tietz extension theorem, and Gelfand–Kolmogoroff theorem. The content of this volume is spread into eight chapters of which the last chapter conveys the history of metric spaces and the history of the emergence of the concepts leading to the development of topology as a subject with their motivations with an emphasis on general topology. It includes more material than is comfortably covered by beginner students in a one-semester course. Students of advanced courses will also find the book useful. This book will promote the scope, power, and active learning of the subject, all the while covering a wide range of theories and applications in a balanced unified way.




Introduction to Topology


Book Description

This text explains nontrivial applications of metric space topology to analysis. Covers metric space, point-set topology, and algebraic topology. Includes exercises, selected answers, and 51 illustrations. 1983 edition.




A Basic Course in Algebraic Topology


Book Description

This textbook is intended for a course in algebraic topology at the beginning graduate level. The main topics covered are the classification of compact 2-manifolds, the fundamental group, covering spaces, singular homology theory, and singular cohomology theory. These topics are developed systematically, avoiding all unnecessary definitions, terminology, and technical machinery. The text consists of material from the first five chapters of the author's earlier book, Algebraic Topology; an Introduction (GTM 56) together with almost all of his book, Singular Homology Theory (GTM 70). The material from the two earlier books has been substantially revised, corrected, and brought up to date.




Essential Topology


Book Description

This book brings the most important aspects of modern topology within reach of a second-year undergraduate student. It successfully unites the most exciting aspects of modern topology with those that are most useful for research, leaving readers prepared and motivated for further study. Written from a thoroughly modern perspective, every topic is introduced with an explanation of why it is being studied, and a huge number of examples provide further motivation. The book is ideal for self-study and assumes only a familiarity with the notion of continuity and basic algebra.