Basic Wave Analysis


Book Description

The purpose of this book is to provide the information required for understanding the fundamental aspects of the elaborate computer processing schemes prevalent in exploration geophysics. Basic Wave Analysis has three parts. Part 1 addresses velocity analysis. The correct determination of velocity is the most important problem in seismic exploration, and an understanding of velocity analysis is a valuable asset for a geophysicist. Part 2 discusses raypath analysis. Raypaths provide a geometrical picture of how waves travel, so that a person can visualize raypaths in their imagination. Geometrical pictures are as important in seismology as they are in optics. Part 3 addresses wavefront analysis. A person cannot easily visualize traveling wavefronts in their imagination; however, a computer can follow their motion, and give the geophysicist the final outcome. Knowledge of wavefront analysis helps a geophysicist understand many modern computer methods. This book has not been written to address advanced subjects. Rather, it concentrates on the basic concepts of Fermat and Huygens to explore and understand basic wave analysis. This book is based upon inventive science. It deals with ideas, and not with numerical algorithms. It does not explain the details the many migration and inversion methods use, but it does provide readers with the tools needed to make those topics more understandable. The three parts of this book are in the order of increasing difficulty, and the most important part is Part 1, because velocity analysis is central to every seismic investigation.




Basic Wave Mechanics


Book Description

Intended for coastal engineers and marine scientists who desire to develop a fundamental physical understanding of ocean waves and be able to apply this knowledge to ocean and coastal analysis and design. Provides an introduction to the physical processes of ocean wave mechanics, an understanding of the basic techniques for wave analysis, techniques for practical calculation and prediction of waves and applied wave forecasting.




Basic Wave Analysis


Book Description

The purpose of this book is to provide the information required for understanding the fundamental aspects of the elaborate computer processing schemes prevalent in exploration geophysics. Basic Wave Analysis has three parts. Part 1 addresses velocity analysis. The correct determination of velocity is the most important problem in seismic exploration, and an understanding of velocity analysis is a valuable asset for a geophysicist. Part 2 discusses raypath analysis. Raypaths provide a geometrical picture of how waves travel, so that a person can visualize raypaths in their imagination. Geometrical pictures are as important in seismology as they are in optics. Part 3 addresses wavefront analysis. A person cannot easily visualize traveling wavefronts in their imagination; however, a computer can follow their motion, and give the geophysicist the final outcome. Knowledge of wavefront analysis helps a geophysicist understand many modern computer methods. This book has not been written to address advanced subjects. Rather, it concentrates on the basic concepts of Fermat and Huygens to explore and understand basic wave analysis. This book is based upon inventive science. It deals with ideas, and not with numerical algorithms. It does not explain the details the many migration and inversion methods use, but it does provide readers with the tools needed to make those topics more understandable. The three parts of this book are in the order of increasing difficulty, and the most important part is Part 1, because velocity analysis is central to every seismic investigation.




Understanding Amplitudes


Book Description

Elementary, conceptual, and easy to read, this book describes the methods and techniques used to estimate rock properties from seismic data, based on a sound understanding of the elastic properties of materials and rocks and how the amplitudes of seismic reflections change with those properties. By examining the recorded seismic amplitudes in some detail, we can deduce properties beyond the basic geological structure of the subsurface. We can, using AVO and other amplitude techniques, characterize rocks and the reservoirs inside them with some degree of qualitative, and even quantitative, detail. Mathematics is not ignored, but is kept to a minimum. Intended for geophysicists, seismic acquisition specialists, processors, and interpreters, even those with little previous exposure to ‘quantitative interpretation’, ‘interpretive processing’ or ‘advanced seismic analysis’, this book also would be appropriate for geologists, engineers, and technicians who are familiar with the concepts but need a methodical review as well as managers and businesspeople who would like to obtain an understanding of these concepts.




Surface Wave Analysis for Near Surface Applications


Book Description

Seismic Wave Analysis for Near Surface Applications presents the foundational tools necessary to properly analyze surface waves acquired according to both active and passive techniques. Applications range from seismic hazard studies, geotechnical surveys and the exploration of extra-terrestrial bodies. Surface waves have become critical to near-surface geophysics both for geotechnical goals and seismic-hazard studies. Included in this book are the related theories, approaches and applications which the lead editor has assembled from a range of authored contributions carefully selected from the latest developments in research. A unique blend of theory and practice, the book's concepts are based on exhaustive field research conducted over the past decade from the world's leading seismologists and geophysicists. - Edited by a geophysicist with nearly 20 years of experience in research, consulting, and geoscience software development - Nearly 100 figures, photographs, and examples aid in the understanding of fundamental concepts and techniques - Presents the latest research in seismic wave characteristics and analysis, the fundamentals of signal processing, wave data acquisition and inversion, and the latest developments in horizontal-to-vertical spectral ratio (HVSR) - Each chapter features a real-world case study—13 in all—to bring the book's key principles to life




Seismic Signatures and Analysis of Reflection Data in Anisotropic Media


Book Description

Following the breakthrough in the last decade in identifying the key parameters for time and depth imaging in anisotropic media and developing practical methodologies for estimating them from seismic data, Seismic Signatures and Analysis of Reflection Data in Anisotropic Media primarily focuses on the far reaching exploration benefits of anisotropic processing. This volume provides the first comprehensive description of reflection seismic signatures and processing methods in anisotropic media. It identifies the key parameters for time and depth imaging in transversely isotropic media and describes practical methodologies for estimating them from seismic data. Also, it contains a thorough discussion of the important issues of uniqueness and stability of seismic velocity analysis in the presence of anisotropy. The book contains a complete description of anisotropic imaging methods, from the theoretical background to algorithms to implementation issues. Numerous applications to synthetic and field data illustrate the improvements achieved by the anisotropic processing and the possibility of using the estimated anisotropic parameters in lithology discrimination. Focuses on the far reaching exploration benefits of anisotropic processing First comprehensive description of reflection seismic signatures and processing methods in anisotropic media




Wave Fields in Real Media


Book Description

Authored by the internationally renowned José M. Carcione, Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic, Porous and Electromagnetic Media examines the differences between an ideal and a real description of wave propagation, starting with the introduction of relevant stress-strain relations. The combination of this relation and the equations of momentum conservation lead to the equation of motion. The differential formulation is written in terms of memory variables, and Biot's theory is used to describe wave propagation in porous media. For each rheology, a plane-wave analysis is performed in order to understand the physics of wave propagation. This book contains a review of the main direct numerical methods for solving the equation of motion in the time and space domains. The emphasis is on geophysical applications for seismic exploration, but researchers in the fields of earthquake seismology, rock acoustics, and material science - including many branches of acoustics of fluids and solids - may also find this text useful. New to this edition: This new edition presents the fundamentals of wave propagation in Anisotropic, Anelastic, Porous Media while also incorporating the latest research from the past 7 years, including that of the author. The author presents all the equations and concepts necessary to understand the physics of wave propagation. These equations form the basis for modeling and inversion of seismic and electromagnetic data. Additionally, demonstrations are given, so the book can be used to teach post-graduate courses. Addition of new and revised content is approximately 30%. Examines the fundamentals of wave propagation in anisotropic, anelastic and porous media Presents all equations and concepts necessary to understand the physics of wave propagation, with examples Emphasizes geophysics, particularly, seismic exploration for hydrocarbon reservoirs, which is essential for exploration and production of oil




The Wave Principle


Book Description

The Elliott Wave Principle is a form of technical analysis that some traders use to analyze financial market cycles and forecast market trends by identifying extremes in investor psychology, highs and lows in prices, and other collective factors. Ralph Nelson Elliott, a professional accountant, discovered the underlying social principles and developed the analytical tools. He proposed that market prices unfold in specific patterns, which practitioners today call Elliott waves, or simply waves. Elliott published his theory of market behavior in this book "The Wave Principle". Elliott stated that "because man is subject to rhythmical procedure, calculations having to do with his activities can be projected far into the future with a justification and certainty heretofore unattainable."




Wavelet and Wave Analysis as Applied to Materials with Micro Or Nanostructure


Book Description

This seminal book unites three different areas of modern science: the micromechanics and nanomechanics of composite materials; wavelet analysis as applied to physical problems; and the propagation of a new type of solitary wave in composite materials, nonlinear waves. Each of the three areas is described in a simple and understandable form, focusing on the many perspectives of the links among the three.All of the techniques and procedures are described here in the clearest and most open form, enabling the reader to quickly learn and use them when faced with the new and more advanced problems that are proposed in this book. By combining these new scientific concepts into a unitary model and enlightening readers on this pioneering field of research, readers will hopefully be inspired to explore the more advanced aspects of this promising scientific direction. The application of wavelet analysis to nanomaterials and waves in nanocomposites can be very appealing to both specialists working on theoretical developments in wavelets as well as specialists applying these methods and experiments in the mechanics of materials.




Traveling Wave Analysis of Partial Differential Equations


Book Description

Although the Partial Differential Equations (PDE) models that are now studied are usually beyond traditional mathematical analysis, the numerical methods that are being developed and used require testing and validation. This is often done with PDEs that have known, exact, analytical solutions. The development of analytical solutions is also an active area of research, with many advances being reported recently, particularly traveling wave solutions for nonlinear evolutionary PDEs. Thus, the current development of analytical solutions directly supports the development of numerical methods by providing a spectrum of test problems that can be used to evaluate numerical methods. This book surveys some of these new developments in analytical and numerical methods, and relates the two through a series of PDE examples. The PDEs that have been selected are largely "named'' since they carry the names of their original contributors. These names usually signify that the PDEs are widely recognized and used in many application areas. The authors' intention is to provide a set of numerical and analytical methods based on the concept of a traveling wave, with a central feature of conversion of the PDEs to ODEs. The Matlab and Maple software will be available for download from this website shortly. www.pdecomp.net - Includes a spectrum of applications in science, engineering, applied mathematics - Presents a combination of numerical and analytical methods - Provides transportable computer codes in Matlab and Maple