Vector Network Analyzer (VNA) Measurements and Uncertainty Assessment


Book Description

This book describes vector network analyzer measurements and uncertainty assessments, particularly in waveguide test-set environments, in order to establish their compatibility to the International System of Units (SI) for accurate and reliable characterization of communication networks. It proposes a fully analytical approach to measurement uncertainty evaluation, while also highlighting the interaction and the linear propagation of different uncertainty sources to compute the final uncertainties associated with the measurements. The book subsequently discusses the dimensional characterization of waveguide standards and the quality of the vector network analyzer (VNA) calibration techniques. The book concludes with an in-depth description of the novel verification artefacts used to assess the performance of the VNAs. It offers a comprehensive reference guide for beginners to experts, in both academia and industry, whose work involves the field of network analysis, instrumentation and measurements.




Handbook of Microwave Component Measurements


Book Description

This book provides state-of-the-art coverage for making measurements on RF and Microwave Components, both active and passive. A perfect reference for R&D and Test Engineers, with topics ranging from the best practices for basic measurements, to an in-depth analysis of errors, correction methods, and uncertainty analysis, this book provides everything you need to understand microwave measurements. With primary focus on active and passive measurements using a Vector Network Analyzer, these techniques and analysis are equally applicable to measurements made with Spectrum Analyzers or Noise Figure Analyzers. The early chapters provide a theoretical basis for measurements complete with extensive definitions and descriptions of component characteristics and measurement parameters. The latter chapters give detailed examples for cases of cable, connector and filter measurements; low noise, high-gain and high power amplifier measurements, a wide range of mixer and frequency converter measurements, and a full examination of fixturing, de-embedding, balanced measurements and calibration techniques. The chapter on time-domain theory and measurements is the most complete treatment on the subject yet presented, with details of the underlying mathematics and new material on time domain gating. As the inventor of many of the methods presented, and with 30 years as a development engineer on the most modern measurement platforms, the author presents unique insights into the understanding of modern measurement theory. Key Features: Explains the interactions between the device-under-test (DUT) and the measuring equipment by demonstrating the best practices for ascertaining the true nature of the DUT, and optimizing the time to set up and measure Offers a detailed explanation of algorithms and mathematics behind measurements and error correction Provides numerous illustrations (e.g. block-diagrams for circuit connections and measurement setups) and practical examples on real-world devices, which can provide immediate benefit to the reader Written by the principle developer and designer of many of the measurement methods described This book will be an invaluable guide for RF and microwave R&D and test engineers, satellite test engineers, radar engineers, power amplifier designers, LNA designers, and mixer designers. University researchers and graduate students in microwave design and test will also find this book of interest.




Modern RF and Microwave Measurement Techniques


Book Description

A comprehensive, hands-on review of the most up-to-date techniques in RF and microwave measurement, including practical advice on deployment challenges.




Handbook of Microwave Component Measurements


Book Description

Handbook of Microwave Component Measurements Second Edition is a fully updated, complete reference to this topic, focusing on the modern measurement tools, such as a Vector Network Analyzer (VNA), gathering in one place all the concepts, formulas, and best practices of measurement science. It includes basic concepts in each chapter as well as appendices which provide all the detail needed to understand the science behind microwave measurements. The book offers an insight into the best practices for ascertaining the true nature of the device-under-test (DUT), optimizing the time to setup and measure, and to the greatest extent possible, remove the effects of the measuring equipment from that result. Furthermore, the author writes with a simplicity that is easily accessible to the student or new engineer, yet is thorough enough to provide details of measurement science for even the most advanced applications and researchers. This welcome new edition brings forward the most modern techniques used in industry today, and recognizes that more new techniques have developed since the first edition published in 2012. Whilst still focusing on the VNA, these techniques are also compatible with other vendor's advanced equipment, providing a comprehensive industry reference.







THz Communications


Book Description

This book describes the fundamentals of THz communications, spanning the whole range of applications, propagation and channel models, RF transceiver technology, antennas, baseband techniques, and networking interfaces. The requested data rate in wireless communications will soon reach from 100 Gbit/s up to 1 Tbps necessitating systems with ultra-high bandwidths of several 10s of GHz which are available only above 200 GHz. In the last decade, research at these frequency bands has made significant progress, enabling mature experimental demonstrations of so-called THz communications, which are thus expected to play a vital role in future wireless networks. In addition to chapters by leading experts on the theory, modeling, and implementation of THz communication technology, the book also features the latest experimental results and addresses standardization and regulatory aspects. This book will be of interest to both academic researchers and engineers in the telecommunications industry.




An Introduction to Microwave Measurements


Book Description

Go Beyond Basic Distributed Circuit AnalysisAn Introduction to Microwave Measurements has been written in a way that is different from many textbooks. As an instructor teaching a master's-level course on microwave measurements, the author recognized that few of today's graduate electrical engineering students are knowledgeable about microwave measu




The VNA Applications Handbook


Book Description

Written by prominent experts in the field, this authoritative new resource provides guidelines for performing a wide variety of Vector Network Analyzers (VNA) measurements. The capabilities and limitations of modern VNA in the context of challenging real-world applications are explained, as well as insights for optimizing test setups and instrument settings, making accurate measurements and, equally important, avoiding costly mistakes. Organized by topic, the readers can focus on chapters covering particular measurement challenges. Application topics include linear and non-linear measurements of passive and active devices, frequency converting devices, and special considerations for high-power, high-gain, and pulsed devices. Signal Integrity and time-domain reflectometry are covered, as well as emerging applications at millimeter-wave frequencies driven by 5G and automotive radar. Waveguide is presented, with emphasis on understanding guided-wave propagation and the associated calculations required for creating calibration standards. Each application is supported by illustrations that help explain key concepts and VNA screenshots are used to show both expected and, in some cases, unexpected results. This book equips engineers and lab technicians to better understand these important instruments, and effectively use them to develop the technologies that drive our world.