Bayesian Methods in Cosmology


Book Description

Comprehensive introduction to Bayesian methods in cosmological studies, for graduate students and researchers in cosmology, astrophysics and applied statistics.




Bayesian Methods in Cosmology


Book Description

In recent years cosmologists have advanced from largely qualitative models of the Universe to precision modelling using Bayesian methods, in order to determine the properties of the Universe to high accuracy. This timely book is the only comprehensive introduction to the use of Bayesian methods in cosmological studies, and is an essential reference for graduate students and researchers in cosmology, astrophysics and applied statistics. The first part of the book focuses on methodology, setting the basic foundations and giving a detailed description of techniques. It covers topics including the estimation of parameters, Bayesian model comparison, and separation of signals. The second part explores a diverse range of applications, from the detection of astronomical sources (including through gravitational waves), to cosmic microwave background analysis and the quantification and classification of galaxy properties. Contributions from 24 highly regarded cosmologists and statisticians make this an authoritative guide to the subject.




Bayesian Methods for the Physical Sciences


Book Description

Statistical literacy is critical for the modern researcher in Physics and Astronomy. This book empowers researchers in these disciplines by providing the tools they will need to analyze their own data. Chapters in this book provide a statistical base from which to approach new problems, including numerical advice and a profusion of examples. The examples are engaging analyses of real-world problems taken from modern astronomical research. The examples are intended to be starting points for readers as they learn to approach their own data and research questions. Acknowledging that scientific progress now hinges on the availability of data and the possibility to improve previous analyses, data and code are distributed throughout the book. The JAGS symbolic language used throughout the book makes it easy to perform Bayesian analysis and is particularly valuable as readers may use it in a myriad of scenarios through slight modifications. This book is comprehensive, well written, and will surely be regarded as a standard text in both astrostatistics and physical statistics. Joseph M. Hilbe, President, International Astrostatistics Association, Professor Emeritus, University of Hawaii, and Adjunct Professor of Statistics, Arizona State University







Bayesian Models for Astrophysical Data


Book Description

This comprehensive guide to Bayesian methods in astronomy enables hands-on work by supplying complete R, JAGS, Python, and Stan code, to use directly or to adapt. It begins by examining the normal model from both frequentist and Bayesian perspectives and then progresses to a full range of Bayesian generalized linear and mixed or hierarchical models, as well as additional types of models such as ABC and INLA. The book provides code that is largely unavailable elsewhere and includes details on interpreting and evaluating Bayesian models. Initial discussions offer models in synthetic form so that readers can easily adapt them to their own data; later the models are applied to real astronomical data. The consistent focus is on hands-on modeling, analysis of data, and interpretations that address scientific questions. A must-have for astronomers, its concrete approach will also be attractive to researchers in the sciences more generally.




Statistical Challenges in Astronomy


Book Description

Digital sky surveys, high-precision astrometry from satellite data, deep-space data from orbiting telescopes, and the like have all increased the quantity and quality of astronomical data by orders of magnitude per year for several years. Making sense of this wealth of data requires sophisticated statistical techniques. Fortunately, statistical methodologies have similarly made great strides in recent years. Powerful synergies thus emerge when astronomers and statisticians join in examining astrostatistical problems and approaches. The book begins with an historical overview and tutorial articles on basic cosmology for statisticians and the principles of Bayesian analysis for astronomers. As in earlier volumes in this series, research contributions discussing topics in one field are joined with commentary from scholars in the other. Thus, for example, an overview of Bayesian methods for Poissonian data is joined by discussions of planning astronomical observations with optimal efficiency and nested models to deal with instrumental effects. The principal theme for the volume is the statistical methods needed to model fundamental characteristics of the early universe on its largest scales.




Bayesian Astrophysics


Book Description

Bayesian methods are being increasingly employed in many different areas of research in the physical sciences. In astrophysics, models are used to make predictions to be compared to observations. These observations offer information that is incomplete and uncertain, so the comparison has to be pursued by following a probabilistic approach. With contributions from leading experts, this volume covers the foundations of Bayesian inference, a description of computational methods, and recent results from their application to areas such as exoplanet detection and characterisation, image reconstruction, and cosmology. It appeals to both young researchers seeking to learn about Bayesian methods as well as to astronomers wishing to incorporate these approaches in their research areas. It provides the next generation of researchers with the tools of modern data analysis that are already becoming standard in current astrophysical research.




Statistics for Astrophysics


Book Description

This book includes the lectures given during the third session of the School of Statistics for Astrophysics that took place at Autrans, near Grenoble, in France, in October 2017. The subject is Bayesian Methodology. The interest of this statistical approach in astrophysics probably comes from its necessity and its success in determining the cosmological parameters from observations, especially from the cosmic background luctuations. The cosmological community has thus been very active in this field for many years. But the Bayesian methodology, complementary to the more classical frequentist one, has many applications in physics in general due to its ability to incorporate a priori knowledge into inference, such as uncertainty brought by the observational processes. The Bayesian approach becomes more and more widespread in the astrophysical literature. This book contains statistics courses on basic to advanced methods with practical exercises using the R environment, by leading experts in their field. This covers the foundations of Bayesian inference, Markov chain Monte Carlo technique, model building, Approximate Bayesian Computation (ABC) and Bayesian nonparametric inference and clustering.




Advanced Statistical Methods for Astrophysical Probes of Cosmology


Book Description

This thesis explores advanced Bayesian statistical methods for extracting key information for cosmological model selection, parameter inference and forecasting from astrophysical observations. Bayesian model selection provides a measure of how good models in a set are relative to each other - but what if the best model is missing and not included in the set? Bayesian Doubt is an approach which addresses this problem and seeks to deliver an absolute rather than a relative measure of how good a model is. Supernovae type Ia were the first astrophysical observations to indicate the late time acceleration of the Universe - this work presents a detailed Bayesian Hierarchical Model to infer the cosmological parameters (in particular dark energy) from observations of these supernovae type Ia.




Bayesian Modeling Using WinBUGS


Book Description

A hands-on introduction to the principles of Bayesian modeling using WinBUGS Bayesian Modeling Using WinBUGS provides an easily accessible introduction to the use of WinBUGS programming techniques in a variety of Bayesian modeling settings. The author provides an accessible treatment of the topic, offering readers a smooth introduction to the principles of Bayesian modeling with detailed guidance on the practical implementation of key principles. The book begins with a basic introduction to Bayesian inference and the WinBUGS software and goes on to cover key topics, including: Markov Chain Monte Carlo algorithms in Bayesian inference Generalized linear models Bayesian hierarchical models Predictive distribution and model checking Bayesian model and variable evaluation Computational notes and screen captures illustrate the use of both WinBUGS as well as R software to apply the discussed techniques. Exercises at the end of each chapter allow readers to test their understanding of the presented concepts and all data sets and code are available on the book's related Web site. Requiring only a working knowledge of probability theory and statistics, Bayesian Modeling Using WinBUGS serves as an excellent book for courses on Bayesian statistics at the upper-undergraduate and graduate levels. It is also a valuable reference for researchers and practitioners in the fields of statistics, actuarial science, medicine, and the social sciences who use WinBUGS in their everyday work.