Bayesian Networks and Influence Diagrams: A Guide to Construction and Analysis


Book Description

Probabilistic networks, also known as Bayesian networks and influence diagrams, have become one of the most promising technologies in the area of applied artificial intelligence. This book provides a comprehensive guide for practitioners who wish to understand, construct, and analyze intelligent systems for decision support based on probabilistic networks. Intended primarily for practitioners, this book does not require sophisticated mathematical skills. The theory and methods presented are illustrated through more than 140 examples, and exercises are included for the reader to check his/her level of understanding.




Bayesian Networks and Influence Diagrams: A Guide to Construction and Analysis


Book Description

Bayesian Networks and Influence Diagrams: A Guide to Construction and Analysis, Second Edition, provides a comprehensive guide for practitioners who wish to understand, construct, and analyze intelligent systems for decision support based on probabilistic networks. This new edition contains six new sections, in addition to fully-updated examples, tables, figures, and a revised appendix. Intended primarily for practitioners, this book does not require sophisticated mathematical skills or deep understanding of the underlying theory and methods nor does it discuss alternative technologies for reasoning under uncertainty. The theory and methods presented are illustrated through more than 140 examples, and exercises are included for the reader to check his or her level of understanding. The techniques and methods presented for knowledge elicitation, model construction and verification, modeling techniques and tricks, learning models from data, and analyses of models have all been developed and refined on the basis of numerous courses that the authors have held for practitioners worldwide.




Bayesian Networks and Decision Graphs


Book Description

This is a brand new edition of an essential work on Bayesian networks and decision graphs. It is an introduction to probabilistic graphical models including Bayesian networks and influence diagrams. The reader is guided through the two types of frameworks with examples and exercises, which also give instruction on how to build these models. Structured in two parts, the first section focuses on probabilistic graphical models, while the second part deals with decision graphs, and in addition to the frameworks described in the previous edition, it also introduces Markov decision process and partially ordered decision problems.




Bayesian Networks


Book Description

Bayesian Networks, the result of the convergence of artificial intelligence with statistics, are growing in popularity. Their versatility and modelling power is now employed across a variety of fields for the purposes of analysis, simulation, prediction and diagnosis. This book provides a general introduction to Bayesian networks, defining and illustrating the basic concepts with pedagogical examples and twenty real-life case studies drawn from a range of fields including medicine, computing, natural sciences and engineering. Designed to help analysts, engineers, scientists and professionals taking part in complex decision processes to successfully implement Bayesian networks, this book equips readers with proven methods to generate, calibrate, evaluate and validate Bayesian networks. The book: Provides the tools to overcome common practical challenges such as the treatment of missing input data, interaction with experts and decision makers, determination of the optimal granularity and size of the model. Highlights the strengths of Bayesian networks whilst also presenting a discussion of their limitations. Compares Bayesian networks with other modelling techniques such as neural networks, fuzzy logic and fault trees. Describes, for ease of comparison, the main features of the major Bayesian network software packages: Netica, Hugin, Elvira and Discoverer, from the point of view of the user. Offers a historical perspective on the subject and analyses future directions for research. Written by leading experts with practical experience of applying Bayesian networks in finance, banking, medicine, robotics, civil engineering, geology, geography, genetics, forensic science, ecology, and industry, the book has much to offer both practitioners and researchers involved in statistical analysis or modelling in any of these fields.




Risk, Reliability and Safety: Innovating Theory and Practice


Book Description

The safe and reliable performance of many systems with which we interact daily has been achieved through the analysis and management of risk. From complex infrastructures to consumer durables, from engineering systems and technologies used in transportation, health, energy, chemical, oil, gas, aerospace, maritime, defence and other sectors, the management of risk during design, manufacture, operation and decommissioning is vital. Methods and models to support risk-informed decision-making are well established but are continually challenged by technology innovations, increasing interdependencies, and changes in societal expectations. Risk, Reliability and Safety contains papers describing innovations in theory and practice contributed to the scientific programme of the European Safety and Reliability conference (ESREL 2016), held at the University of Strathclyde in Glasgow, Scotland (25—29 September 2016). Authors include scientists, academics, practitioners, regulators and other key individuals with expertise and experience relevant to specific areas. Papers include domain specific applications as well as general modelling methods. Papers cover evaluation of contemporary solutions, exploration of future challenges, and exposition of concepts, methods and processes. Topics include human factors, occupational health and safety, dynamic and systems reliability modelling, maintenance optimisation, uncertainty analysis, resilience assessment, risk and crisis management.




Bayesian Networks


Book Description

Explains the material step-by-step starting from meaningful examples Steps detailed with R code in the spirit of reproducible research Real world data analyses from a Science paper reproduced and explained in detail Examples span a variety of fields across social and life sciences Overview of available software in and outside R




Bayesian Networks


Book Description




Safety and Reliability of Complex Engineered Systems


Book Description

Safety and Reliability of Complex Engineered Systems contains the Proceedings of the 25th European Safety and Reliability Conference, ESREL 2015, held 7-10 September 2015 in Zurich, Switzerland. It includes about 570 papers accepted for presentation at the conference. These contributions focus on theories and methods in the area of risk, safety and




Advances in Artificial Intelligence


Book Description

This book constitutes the refereed proceedings of the 32nd Canadian Conference on Artificial Intelligence, Canadian AI 2019, held in Kingston, ON, Canada, in May 2019. The 27 regular papers and 34 short papers presented together with 8 Graduate Student Symposium papers and 4 Industry Track papers were carefully reviewed and selected from 132 submissions. The focus of the conference was on artificial intelligence research and advanced information and communications technology.




Symbolic and Quantitative Approaches to Reasoning with Uncertainty


Book Description

This book constitutes the refereed proceedings of the 11th European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty, ECSQARU 2011, held in Belfast, UK, in June/July 2011. The 60 revised full papers presented together with 3 invited talks were carefully reviewed and selected from 108 submissions. The papers are organized in topical sections on argumentation; Bayesian networks and causal networks; belief functions; belief revision and inconsistency handling; classification and clustering; default reasoning and logics for reasoning under uncertainty; foundations of reasoning and decision making under uncertainty; fuzzy sets and fuzzy logic; implementation and applications of uncertain systems; possibility theory and possibilistic logic; and uncertainty in databases.