Online Portfolio Selection


Book Description

With the aim to sequentially determine optimal allocations across a set of assets, Online Portfolio Selection (OLPS) has significantly reshaped the financial investment landscape. Online Portfolio Selection: Principles and Algorithms supplies a comprehensive survey of existing OLPS principles and presents a collection of innovative strategies that leverage machine learning techniques for financial investment. The book presents four new algorithms based on machine learning techniques that were designed by the authors, as well as a new back-test system they developed for evaluating trading strategy effectiveness. The book uses simulations with real market data to illustrate the trading strategies in action and to provide readers with the confidence to deploy the strategies themselves. The book is presented in five sections that: Introduce OLPS and formulate OLPS as a sequential decision task Present key OLPS principles, including benchmarks, follow the winner, follow the loser, pattern matching, and meta-learning Detail four innovative OLPS algorithms based on cutting-edge machine learning techniques Provide a toolbox for evaluating the OLPS algorithms and present empirical studies comparing the proposed algorithms with the state of the art Investigate possible future directions Complete with a back-test system that uses historical data to evaluate the performance of trading strategies, as well as MATLAB® code for the back-test systems, this book is an ideal resource for graduate students in finance, computer science, and statistics. It is also suitable for researchers and engineers interested in computational investment. Readers are encouraged to visit the authors’ website for updates: http://olps.stevenhoi.org.




Some Contributions of Bayesian and Computational Learning Methods to Portfolio Selection Problems


Book Description

The present thesis is a study of different optimal portfolio allocation problems in the case where the appreciation rate, named the drift, of the Brownian motion driving the dynamics of the assets is uncertain. We consider an investor having a belief on the drift in the form of a probability distribution, called a prior. The uncertainty about the drift is managed through a Bayesian learning approach which allows for the update of the drift's prior probability distribution. The thesis is divided into two self-contained parts; the first part being split into two chapters: the first develops the theory and the second contains a detailed application to actual market data. A third part constitutes an Appendix and details the data used in the applications. The first part of the thesis is dedicated to the multidimensional Markowitz portfolio selection problem in the case of drift uncertainty. This uncertainty is modeled via an arbitrary prior law which is updated using Bayesian filtering. We first embed the Bayesian-Markowitz problem into an auxiliary standard control problem for which dynamic programming is applied. Then, we show existence and uniqueness of a smooth solution to the related semi-linear partial differential equation (PDE). In the case of a Gaussian prior probability distribution, the multidimensional solution is explicitly computed. Additionally, we study the quantitative impact of learning from the progressively observed data, by comparing the strategy which updates the initial estimate of the drift, i.e. the learning strategy, to the one that keeps it constant, named the non-learning strategy. Ultimately, we analyze the sensitivity of the gain from learning, called value of information or informative value, with respect to different parameters. Next, we illustrate the theory with a detailed application of the previous results on actual market data. We emphasize the robustness of the value added of learning by comparing learning to non-learning optimal strategies in different investment universes: indices of various asset classes, currencies and smart beta strategies. The second part tackles a discrete-time portfolio optimization problem. Here, the goal of the investor is to maximize the expected utility of the terminal wealth of a portfolio of risky assets, assuming an uncertain drift and a maximum drawdown constraint. In this part, we formulate the problem in the general case, and we solve numerically the Gaussian case with the Constant Relative Risk Aversion (CRRA) type utility function via a deep learning resolution. Ultimately, we study the sensitivity of the strategy to the degree of uncertainty of the drift and, as a byproduct, give empirical evidence of the convergence of the non-learning strategy towards a no short-sale constrained Merton problem.







New Frontiers in Artificial Intelligence


Book Description

This book constitutes extended, revised and selected papers from the 9th International Symposium of Artificial Intelligence supported by the Japanese Society for Artificial Intelligence, JSAI-isAI 2017. It was held in November 2017 in Tokyo, Japan. The 22 papers were carefully selected from 109 submissions and are organized in sections on juris-informatics, skill science, artificial intelligence of and for business, logic and engineering of natural language semantics, argument for agreement and assurance, scientific document analysis, knowledge explication for industry.




Dynamic Portfolio Choice with Bayesian Learning


Book Description

This paper examines the importance of parameter uncertainty and learning in the context of dynamic portfolio choice. In a discrete time setting, we consider a Bayesian investor who faces parameter uncertainty and solves her portfolio choice problem while updating her beliefs about the parameters. For different return data generating processes, including i.i.d. returns, autoregressive returns, and exogenous predictability, we show how the investor makes dynamic portfolio choices, taking into account that she will learn from future data. We find that, in general, learning introduces negative horizon effects and that ignoring parameter uncertainty may lead to significant losses in certainty equivalent return on wealth. However, the significance of learning is reduced when the investor uses more past data in her estimation and/or when her risk aversion increases. Learning about unconditional expected returns appears to be the most important aspect of the learning process. Using the earnings-to-price ratio as a predictor and an empirical Bayes prior, we find that learning reduces, but does not necessarily eliminate, the positive hedging demands induced by predictability and correlation between the return and predictor innovations.




Dynamic Bayesian Learning and Optimization in Portfolio Choice Models


Book Description

We develop two dynamic Bayesian portfolio allocation models that address questions of learning and model uncertainty by taking model-specific shortcomings into account. In our first model, we formulate a multi-period portfolio choice problem in which the investor is uncertain about parameters of the model, can learn these parameters over time from observing asset returns, but is also concerned about robustness. To address these concerns, we introduce an objective function which can be regarded as a Bayesian version of relative regret. The optimal portfolio is characterized and shown to involve a ``tilted'' posterior, where the tilting is defined in terms of a family of stochastic benchmarks. We have found this model to perform at least as well as a benchmark given the true market parameters, while outperforming it when the market assets have the same trend. Our next model extends the Black-Litterman portfolio choice model by taking several potential errors into account. We extend Black-Litterman to multiple periods, which allows for us to take into account the pairs of expert forecasts and the realized return. By doing so, we can then perform inference on these experts and discover whether they may have any bias for or against any specific assets. We can also perform similar inference on the market equilibrium distribution, which is typically represented by the capital asset pricing model (CAPM). The result is a model that is analytically intractable but may be solved numerically via Gibbs sampling. Controlled tests show our model performs favorably when Black-Litterman's model assumptions about the market equilibrium and expert views are violated. Backtests shed light on the model's ability to account for CAPM's shortcomings.




Empirical Asset Pricing


Book Description

An introduction to the theory and methods of empirical asset pricing, integrating classical foundations with recent developments. This book offers a comprehensive advanced introduction to asset pricing, the study of models for the prices and returns of various securities. The focus is empirical, emphasizing how the models relate to the data. The book offers a uniquely integrated treatment, combining classical foundations with more recent developments in the literature and relating some of the material to applications in investment management. It covers the theory of empirical asset pricing, the main empirical methods, and a range of applied topics. The book introduces the theory of empirical asset pricing through three main paradigms: mean variance analysis, stochastic discount factors, and beta pricing models. It describes empirical methods, beginning with the generalized method of moments (GMM) and viewing other methods as special cases of GMM; offers a comprehensive review of fund performance evaluation; and presents selected applied topics, including a substantial chapter on predictability in asset markets that covers predicting the level of returns, volatility and higher moments, and predicting cross-sectional differences in returns. Other chapters cover production-based asset pricing, long-run risk models, the Campbell-Shiller approximation, the debate on covariance versus characteristics, and the relation of volatility to the cross-section of stock returns. An extensive reference section captures the current state of the field. The book is intended for use by graduate students in finance and economics; it can also serve as a reference for professionals.