Bayesian Reliability


Book Description

Bayesian Reliability presents modern methods and techniques for analyzing reliability data from a Bayesian perspective. The adoption and application of Bayesian methods in virtually all branches of science and engineering have significantly increased over the past few decades. This increase is largely due to advances in simulation-based computational tools for implementing Bayesian methods. The authors extensively use such tools throughout this book, focusing on assessing the reliability of components and systems with particular attention to hierarchical models and models incorporating explanatory variables. Such models include failure time regression models, accelerated testing models, and degradation models. The authors pay special attention to Bayesian goodness-of-fit testing, model validation, reliability test design, and assurance test planning. Throughout the book, the authors use Markov chain Monte Carlo (MCMC) algorithms for implementing Bayesian analyses -- algorithms that make the Bayesian approach to reliability computationally feasible and conceptually straightforward. This book is primarily a reference collection of modern Bayesian methods in reliability for use by reliability practitioners. There are more than 70 illustrative examples, most of which utilize real-world data. This book can also be used as a textbook for a course in reliability and contains more than 160 exercises. Noteworthy highlights of the book include Bayesian approaches for the following: Goodness-of-fit and model selection methods Hierarchical models for reliability estimation Fault tree analysis methodology that supports data acquisition at all levels in the tree Bayesian networks in reliability analysis Analysis of failure count and failure time data collected from repairable systems, and the assessment of various related performance criteria Analysis of nondestructive and destructive degradation data Optimal design of reliability experiments Hierarchical reliability assurance testing




Safety and Reliability Modeling and Its Applications


Book Description

Safety and Reliability Modeling and Its Applications combines work by leading researchers in engineering, statistics and mathematics who provide innovative methods and solutions for this fast-moving field. Safety and reliability analysis is one of the most multidimensional topics in engineering today. Its rapid development has created many opportunities and challenges for both industrialists and academics, while also completely changing the global design and systems engineering environment. As more modeling tasks can now be undertaken within a computer environment using simulation and virtual reality technologies, this book helps readers understand the number and variety of research studies focusing on this important topic. The book addresses these important recent developments, presenting new theoretical issues that were not previously presented in the literature, along with solutions to important practical problems and case studies that illustrate how to apply the methodology. Uses case studies from industry practice to explain innovative solutions to real world safety and reliability problems Addresses the full interdisciplinary range of topics that influence this complex field Provides brief introductions to important concepts, including stochastic reliability and Bayesian methods




Software Reliability Modelling


Book Description

This book summarizes the recent advances in software reliability modelling. Almost all the existing models are classified and the most interesting models are described in detail.Because of the application of software in many industrial, military and commercial systems, software reliability has become an important research area. Although there are many models and results appeared in different journals and conference proceedings, there is a lack of systematic publications on this subject. The aim of this book is to provide an overview of this area and provide software reliability researchers and analysts with a systematic study of the existing results. This book can also be used as a reference book for other software engineers and reliability theoreticians interested in this area.




System Reliability Theory


Book Description

A comprehensive introduction to reliability analysis. The first section provides a thorough but elementary prologue to reliability theory. The latter half comprises more advanced analytical tools including Markov processes, renewal theory, life data analysis, accelerated life testing and Bayesian reliability analysis. Features numerous worked examples. Each chapter concludes with a selection of problems plus additional material on applications.




Practical Applications of Bayesian Reliability


Book Description

Demonstrates how to solve reliability problems using practical applications of Bayesian models This self-contained reference provides fundamental knowledge of Bayesian reliability and utilizes numerous examples to show how Bayesian models can solve real life reliability problems. It teaches engineers and scientists exactly what Bayesian analysis is, what its benefits are, and how they can apply the methods to solve their own problems. To help readers get started quickly, the book presents many Bayesian models that use JAGS and which require fewer than 10 lines of command. It also offers a number of short R scripts consisting of simple functions to help them become familiar with R coding. Practical Applications of Bayesian Reliability starts by introducing basic concepts of reliability engineering, including random variables, discrete and continuous probability distributions, hazard function, and censored data. Basic concepts of Bayesian statistics, models, reasons, and theory are presented in the following chapter. Coverage of Bayesian computation, Metropolis-Hastings algorithm, and Gibbs Sampling comes next. The book then goes on to teach the concepts of design capability and design for reliability; introduce Bayesian models for estimating system reliability; discuss Bayesian Hierarchical Models and their applications; present linear and logistic regression models in Bayesian Perspective; and more. Provides a step-by-step approach for developing advanced reliability models to solve complex problems, and does not require in-depth understanding of statistical methodology Educates managers on the potential of Bayesian reliability models and associated impact Introduces commonly used predictive reliability models and advanced Bayesian models based on real life applications Includes practical guidelines to construct Bayesian reliability models along with computer codes for all of the case studies JAGS and R codes are provided on an accompanying website to enable practitioners to easily copy them and tailor them to their own applications Practical Applications of Bayesian Reliability is a helpful book for industry practitioners such as reliability engineers, mechanical engineers, electrical engineers, product engineers, system engineers, and materials scientists whose work includes predicting design or product performance.




System and Bayesian Reliability


Book Description

This volume is a collection of articles on reliability systems and Bayesian reliability analysis. Written by reputable researchers, the articles are self-contained and are linked with literature reviews and new research ideas. The book is dedicated to Emeritus Professor Richard E Barlow, who is well known for his pioneering research on reliability theory and Bayesian reliability analysis. Contents: System Reliability Analysis: On Regular Reliability Models (J-C Chang et al.); Bounding System Reliability (J N Hagstrom & S M Ross); Large Excesses for Finite-State Markov Chains (D Blackwell); Ageing Properties: Nonmonotonic Failure Rates and Mean Residual Life Functions (R C Gupta); The Failure Rate and the Mean Residual Lifetime of Mixtures (M S Finkelstein); On Some Discrete Notions of Aging (C Bracquemond et al.); Bayesian Analysis: On the Practical Implementation of the Bayesian Paradigm in Reliability and Risk Analysis (T Aven); A Weibull Wearout Test: Full Bayesian Approach (T Z Irony et al.); Bayesian Nonparametric Estimation of a Monotone Hazard Rate (M-W Ho & A Y Lo); and other papers. Readership: Students, academics, researchers and professionals in industrial engineering, probability and statistics, and applied mathematics.




Bayesian Networks for Reliability Engineering


Book Description

This book presents a bibliographical review of the use of Bayesian networks in reliability over the last decade. Bayesian network (BN) is considered to be one of the most powerful models in probabilistic knowledge representation and inference, and it is increasingly used in the field of reliability. After focusing on the engineering systems, the book subsequently discusses twelve important issues in the BN-based reliability methodologies, such as BN structure modeling, BN parameter modeling, BN inference, validation, and verification. As such, it is a valuable resource for researchers and practitioners in the field of reliability engineering.




Reliability and Risk


Book Description

We all like to know how reliable and how risky certain situations are, and our increasing reliance on technology has led to the need for more precise assessments than ever before. Such precision has resulted in efforts both to sharpen the notions of risk and reliability, and to quantify them. Quantification is required for normative decision-making, especially decisions pertaining to our safety and wellbeing. Increasingly in recent years Bayesian methods have become key to such quantifications. Reliability and Risk provides a comprehensive overview of the mathematical and statistical aspects of risk and reliability analysis, from a Bayesian perspective. This book sets out to change the way in which we think about reliability and survival analysis by casting them in the broader context of decision-making. This is achieved by: Providing a broad coverage of the diverse aspects of reliability, including: multivariate failure models, dynamic reliability, event history analysis, non-parametric Bayes, competing risks, co-operative and competing systems, and signature analysis. Covering the essentials of Bayesian statistics and exchangeability, enabling readers who are unfamiliar with Bayesian inference to benefit from the book. Introducing the notion of “composite reliability”, or the collective reliability of a population of items. Discussing the relationship between notions of reliability and survival analysis and econometrics and financial risk. Reliability and Risk can most profitably be used by practitioners and research workers in reliability and survivability as a source of information, reference, and open problems. It can also form the basis of a graduate level course in reliability and risk analysis for students in statistics, biostatistics, engineering (industrial, nuclear, systems), operations research, and other mathematically oriented scientists, wherein the instructor could supplement the material with examples and problems.




Statistical Reliability Engineering


Book Description

This book presents the state-of-the-art methodology and detailed analytical models and methods used to assess the reliability of complex systems and related applications in statistical reliability engineering. It is a textbook based mainly on the author’s recent research and publications as well as experience of over 30 years in this field. The book covers a wide range of methods and models in reliability, and their applications, including: statistical methods and model selection for machine learning; models for maintenance and software reliability; statistical reliability estimation of complex systems; and statistical reliability analysis of k out of n systems, standby systems and repairable systems. Offering numerous examples and solved problems within each chapter, this comprehensive text provides an introduction to reliability engineering graduate students, a reference for data scientists and reliability engineers, and a thorough guide for researchers and instructors in the field.




Reliability and Availability Engineering


Book Description

Learn about the techniques used for evaluating the reliability and availability of engineered systems with this comprehensive guide.