Bayesian Variable Selection in Linear and Non-linear Models


Book Description

Appropriate feature selection is a fundamental problem in the field of statistics. Models with large number of features or variables require special attention due to the computational complexity of the huge model space. This is generally known as the variable or model selection problem in the field of statistics whereas in machine learning and other literature, this is also known as feature selection, attribute selection or variable subset selection. The method of variable selection is the process of efficiently selecting an optimal subset of relevant variables for use in model construction. The central assumption in this methodology is that the data contain many redundant variable; those which do not provide any significant additional information than the optimally selected subset of variable. Variable selection is widely used in all application areas of data analytics, ranging from optimal selection of genes in large scale micro-array studies, to optimal selection of biomarkers for targeted therapy in cancer genomics to selection of optimal predictors in business analytics. Under the Bayesian approach, the formal way to perform this optimal selection is to select the model with highest posterior probability. Using this fact the problem may be thought as an optimization problem over the model space where the objective function is the posterior probability of model and the maximization is taken place with respect to the models. We propose an efficient method for implementing this optimization and we illustrate its feasibility in high dimensional problems. By means of various simulation studies, this new approach has been shown to be efficient and to outperform other statistical feature selection methods methods namely median probability model and sampling method with frequency based estimators. Theoretical justifications are provided. Applications to logistic regression and survival regression are discussed.




Bayesian Methods for Nonlinear Classification and Regression


Book Description

Bei der Regressionsanalyse von Datenmaterial erhält man leider selten lineare oder andere einfache Zusammenhänge (parametrische Modelle). Dieses Buch hilft Ihnen, auch komplexere, nichtparametrische Modelle zu verstehen und zu beherrschen. Stärken und Schwächen jedes einzelnen Modells werden durch die Anwendung auf Standarddatensätze demonstriert. Verbreitete nichtparametrische Modelle werden mit Hilfe von Bayes-Verfahren in einen kohärenten wahrscheinlichkeitstheoretischen Zusammenhang gebracht.







Handbook of Bayesian Variable Selection


Book Description

Bayesian variable selection has experienced substantial developments over the past 30 years with the proliferation of large data sets. Identifying relevant variables to include in a model allows simpler interpretation, avoids overfitting and multicollinearity, and can provide insights into the mechanisms underlying an observed phenomenon. Variable selection is especially important when the number of potential predictors is substantially larger than the sample size and sparsity can reasonably be assumed. The Handbook of Bayesian Variable Selection provides a comprehensive review of theoretical, methodological and computational aspects of Bayesian methods for variable selection. The topics covered include spike-and-slab priors, continuous shrinkage priors, Bayes factors, Bayesian model averaging, partitioning methods, as well as variable selection in decision trees and edge selection in graphical models. The handbook targets graduate students and established researchers who seek to understand the latest developments in the field. It also provides a valuable reference for all interested in applying existing methods and/or pursuing methodological extensions. Features: Provides a comprehensive review of methods and applications of Bayesian variable selection. Divided into four parts: Spike-and-Slab Priors; Continuous Shrinkage Priors; Extensions to various Modeling; Other Approaches to Bayesian Variable Selection. Covers theoretical and methodological aspects, as well as worked out examples with R code provided in the online supplement. Includes contributions by experts in the field. Supported by a website with code, data, and other supplementary material







Introduction to Multivariate Analysis


Book Description

Select the Optimal Model for Interpreting Multivariate Data Introduction to Multivariate Analysis: Linear and Nonlinear Modeling shows how multivariate analysis is widely used for extracting useful information and patterns from multivariate data and for understanding the structure of random phenomena. Along with the basic concepts of various procedures in traditional multivariate analysis, the book covers nonlinear techniques for clarifying phenomena behind observed multivariate data. It primarily focuses on regression modeling, classification and discrimination, dimension reduction, and clustering. The text thoroughly explains the concepts and derivations of the AIC, BIC, and related criteria and includes a wide range of practical examples of model selection and evaluation criteria. To estimate and evaluate models with a large number of predictor variables, the author presents regularization methods, including the L1 norm regularization that gives simultaneous model estimation and variable selection. For advanced undergraduate and graduate students in statistical science, this text provides a systematic description of both traditional and newer techniques in multivariate analysis and machine learning. It also introduces linear and nonlinear statistical modeling for researchers and practitioners in industrial and systems engineering, information science, life science, and other areas.




Monte Carlo Simulation and Resampling Methods for Social Science


Book Description

Taking the topics of a quantitative methodology course and illustrating them through Monte Carlo simulation, this book examines abstract principles, such as bias, efficiency, and measures of uncertainty in an intuitive, visual way. Instead of thinking in the abstract about what would happen to a particular estimator "in repeated samples," the book uses simulation to actually create those repeated samples and summarize the results. The book includes basic examples appropriate for readers learning the material for the first time, as well as more advanced examples that a researcher might use to evaluate an estimator he or she was using in an actual research project. The book also covers a wide range of topics related to Monte Carlo simulation, such as resampling methods, simulations of substantive theory, simulation of quantities of interest (QI) from model results, and cross-validation. Complete R code from all examples is provided so readers can replicate every analysis presented using R.







Gaussian Process Regression Analysis for Functional Data


Book Description

Gaussian Process Regression Analysis for Functional Data presents nonparametric statistical methods for functional regression analysis, specifically the methods based on a Gaussian process prior in a functional space. The authors focus on problems involving functional response variables and mixed covariates of functional and scalar variables.Coveri




Partially Linear Models


Book Description

In the last ten years, there has been increasing interest and activity in the general area of partially linear regression smoothing in statistics. Many methods and techniques have been proposed and studied. This monograph hopes to bring an up-to-date presentation of the state of the art of partially linear regression techniques. The emphasis is on methodologies rather than on the theory, with a particular focus on applications of partially linear regression techniques to various statistical problems. These problems include least squares regression, asymptotically efficient estimation, bootstrap resampling, censored data analysis, linear measurement error models, nonlinear measurement models, nonlinear and nonparametric time series models.