Beginning FPGA: Programming Metal


Book Description

Use Arrow's affordable and breadboard-friendly FPGA development board (BeMicro MAX 10) to create a light sensor, temperature sensor, motion sensor, and the KITT car display from Knight Rider. You don't need an electronics engineering degree or even any programming experience to get the most out of Beginning FPGA: Programming Metal. Just bring your curiosity and your Field-Programmable Gate Array. This book is for those who have tinkered with Arduino or Raspberry Pi, and want to get more hands-on experience with hardware or for those new to electronics who just want to dive in. You'll learn the theory behind FPGAs and electronics, including the math and logic you need to understand what's happening - all explained in a fun, friendly, and accessible way. It also doesn't hurt that you'll be learning VHDL, a hardware description language that is also an extremely marketable skill. What You'll Learn: Learn what an FPGA is and how it's different from a microcontroller or ASIC Set up your toolchain Use VHDL, a popular hardware description language, to tell your FPGA what to be Explore the theory behind FPGA and electronics Use your FPGA with a variety of sensors and to talk to a Raspberry Pi Who This Book is For: Arduino, Raspberry Pi, and other electronics enthusiasts who want a clear and practical introduction to FPGA.




FPGA Programming for Beginners


Book Description

Get started with FPGA programming using SystemVerilog, and develop real-world skills by building projects, including a calculator and a keyboard Key Features Explore different FPGA usage methods and the FPGA tool flow Learn how to design, test, and implement hardware circuits using SystemVerilog Build real-world FPGA projects such as a calculator and a keyboard using FPGA resources Book DescriptionField Programmable Gate Arrays (FPGAs) have now become a core part of most modern electronic and computer systems. However, to implement your ideas in the real world, you need to get your head around the FPGA architecture, its toolset, and critical design considerations. FPGA Programming for Beginners will help you bring your ideas to life by guiding you through the entire process of programming FPGAs and designing hardware circuits using SystemVerilog. The book will introduce you to the FPGA and Xilinx architectures and show you how to work on your first project, which includes toggling an LED. You’ll then cover SystemVerilog RTL designs and their implementations. Next, you’ll get to grips with using the combinational Boolean logic design and work on several projects, such as creating a calculator and updating it using FPGA resources. Later, the book will take you through the advanced concepts of AXI and show you how to create a keyboard using PS/2. Finally, you’ll be able to consolidate all the projects in the book to create a unified output using a Video Graphics Array (VGA) controller that you’ll design. By the end of this SystemVerilog FPGA book, you’ll have learned how to work with FPGA systems and be able to design hardware circuits and boards using SystemVerilog programming.What you will learn Understand the FPGA architecture and its implementation Get to grips with writing SystemVerilog RTL Make FPGA projects using SystemVerilog programming Work with computer math basics, parallelism, and pipelining Explore the advanced topics of AXI and keyboard interfacing with PS/2 Discover how you can implement a VGA interface in your projects Who this book is for This FPGA design book is for embedded system developers, engineers, and programmers who want to learn FPGA and SystemVerilog programming from scratch. FPGA designers looking to gain hands-on experience in working on real-world projects will also find this book useful.




The Design Warrior's Guide to FPGAs


Book Description

Field Programmable Gate Arrays (FPGAs) are devices that provide a fast, low-cost way for embedded system designers to customize products and deliver new versions with upgraded features, because they can handle very complicated functions, and be reconfigured an infinite number of times. In addition to introducing the various architectural features available in the latest generation of FPGAs, The Design Warrior’s Guide to FPGAs also covers different design tools and flows. This book covers information ranging from schematic-driven entry, through traditional HDL/RTL-based simulation and logic synthesis, all the way up to the current state-of-the-art in pure C/C++ design capture and synthesis technology. Also discussed are specialist areas such as mixed hardward/software and DSP-based design flows, along with innovative new devices such as field programmable node arrays (FPNAs). Clive "Max" Maxfield is a bestselling author and engineer with a large following in the electronic design automation (EDA)and embedded systems industry. In this comprehensive book, he covers all the issues of interest to designers working with, or contemplating a move to, FPGAs in their product designs. While other books cover fragments of FPGA technology or applications this is the first to focus exclusively and comprehensively on FPGA use for embedded systems. First book to focus exclusively and comprehensively on FPGA use in embedded designs World-renowned best-selling author Will help engineers get familiar and succeed with this new technology by providing much-needed advice on choosing the right FPGA for any design project




The FPGA Programming Handbook


Book Description

Develop solid FPGA programming skills in SystemVerilog and VHDL by crafting practical projects – VGA controller, microprocessor, calculator, keyboard – and amplify your know-how with insider industry knowledge, all in one handbook. Purchase of the print or Kindle book includes a free eBook in PDF format Key Features Explore a wide range of FPGA applications, grasp their versatility, and master Xilinx FPGA tool flow Master the intricacies of SystemVerilog and VHDL to develop robust and efficient hardware circuits Refine skills with CPU, VGA, and calculator projects for practical expertise in real-world applications Book DescriptionIn today's tech-driven world, Field Programmable Gate Arrays (FPGAs) are the foundation of many modern systems. Transforming ideas into reality demands a deep dive into FPGA architecture, tools, and design principles. This FPGA book is your companion to mastering FPGA development with SystemVerilog and VHDL. In this edition, you will master both SystemVerilog and VHDL, gaining supreme versatility in FPGA design. These skills open doors to diverse opportunities and projects in the field. Move beyond theory with real-world projects, starting from LED control and progressing to advanced microcontroller applications, which are highly sought after in today's FPGA job market. You will journey from basic Boolean logic circuits to a resource-optimized calculator, showcasing your hardware design prowess. You will elevate your knowledge by designing a Video Graphics Array (VGA) controller, demonstrating your ability to synthesize complex hardware systems. You can use this handbook as your FPGA development guide, where you will master intricacies, ignite creativity, and emerge with the expertise to craft hardware circuits using SystemVerilog and VHDL. The FPGA Programming Handbook isn't just another technical manual; it's your exhilarating journey to master theory and practice, accelerating your FPGA design skills to soaring new heights.What you will learn Understand the FPGA architecture and its implementation Get to grips with writing SystemVerilog and VHDL RTL Make FPGA projects using SystemVerilog and VHDL programming Work with computer math basics, parallelism, and pipelining Explore the advanced topics of AXI and keyboard interfacing with PS/2 Discover how you can implement a VGA interface in your projects Explore the PMOD connectors-SPI and UART, using Nexys A7 board Implement an embedded microcontroller in the FPGA Who this book is for This FPGA design book is for embedded system developers, engineers, and programmers who want to learn FPGA design using SystemVerilog or VHDL programming from scratch. FPGA designers looking to gain hands-on experience in working on real-world projects will also find this book useful.




FPGA Implementations of Neural Networks


Book Description

During the 1980s and early 1990s there was signi?cant work in the design and implementation of hardware neurocomputers. Nevertheless, most of these efforts may be judged to have been unsuccessful: at no time have have ha- ware neurocomputers been in wide use. This lack of success may be largely attributed to the fact that earlier work was almost entirely aimed at developing custom neurocomputers, based on ASIC technology, but for such niche - eas this technology was never suf?ciently developed or competitive enough to justify large-scale adoption. On the other hand, gate-arrays of the period m- tioned were never large enough nor fast enough for serious arti?cial-neur- network (ANN) applications. But technology has now improved: the capacity and performance of current FPGAs are such that they present a much more realistic alternative. Consequently neurocomputers based on FPGAs are now a much more practical proposition than they have been in the past. This book summarizes some work towards this goal and consists of 12 papers that were selected, after review, from a number of submissions. The book is nominally divided into three parts: Chapters 1 through 4 deal with foundational issues; Chapters 5 through 11 deal with a variety of implementations; and Chapter 12 looks at the lessons learned from a large-scale project and also reconsiders design issues in light of current and future technology.




FPGA Prototyping by SystemVerilog Examples


Book Description

A hands-on introduction to FPGA prototyping and SoC design This is the successor edition of the popular FPGA Prototyping by Verilog Examples text. It follows the same “learning-by-doing” approach to teach the fundamentals and practices of HDL synthesis and FPGA prototyping. The new edition uses a coherent series of examples to demonstrate the process to develop sophisticated digital circuits and IP (intellectual property) cores, integrate them into an SoC (system on a chip) framework, realize the system on an FPGA prototyping board, and verify the hardware and software operation. The examples start with simple gate-level circuits, progress gradually through the RT (register transfer) level modules, and lead to a functional embedded system with custom I/O peripherals and hardware accelerators. Although it is an introductory text, the examples are developed in a rigorous manner, and the derivations follow the strict design guidelines and coding practices used for large, complex digital systems. The book is completely updated and uses the SystemVerilog language, which “absorbs” the Verilog language. It presents the hardware design in the SoC context and introduces the hardware-software co-design concept. Instead of treating examples as isolated entities, the book integrates them into a single coherent SoC platform that allows readers to explore both hardware and software “programmability” and develop complex and interesting embedded system projects. The new edition: Adds four general-purpose IP cores, which are multi-channel PWM (pulse width modulation) controller, I2C controller, SPI controller, and XADC (Xilinx analog-to-digital converter) controller. Introduces a music synthesizer constructed with a DDFS (direct digital frequency synthesis) module and an ADSR (attack-decay-sustain-release) envelope generator. Expands the original video controller into a complete stream based video subsystem that incorporates a video synchronization circuit, a test-pattern generator, an OSD (on-screen display) controller, a sprite generator, and a frame buffer. Provides a detailed discussion on blocking and nonblocking statements and coding styles. Describes basic concepts of software-hardware co-design with Xilinx MicroBlaze MCS soft-core processor. Provides an overview of bus interconnect and interface circuit. Presents basic embedded system software development. Suggests additional modules and peripherals for interesting and challenging projects. FPGA Prototyping by SystemVerilog Examples makes a natural companion text for introductory and advanced digital design courses and embedded system courses. It also serves as an ideal self-teaching guide for practicing engineers who wish to learn more about this emerging area of interest.




FPGA Architecture


Book Description

Reviews the historical development of programmable logic devices, the fundamental programming technologies that the programmability is built on, and then describes the basic understandings gleaned from research on architectures. It is an invaluable reference for engineers and computer scientists.




FPGA Prototyping by VHDL Examples


Book Description

A hands-on introduction to FPGA prototyping and SoC design This Second Edition of the popular book follows the same “learning-by-doing” approach to teach the fundamentals and practices of VHDL synthesis and FPGA prototyping. It uses a coherent series of examples to demonstrate the process to develop sophisticated digital circuits and IP (intellectual property) cores, integrate them into an SoC (system on a chip) framework, realize the system on an FPGA prototyping board, and verify the hardware and software operation. The examples start with simple gate-level circuits, progress gradually through the RT (register transfer) level modules, and lead to a functional embedded system with custom I/O peripherals and hardware accelerators. Although it is an introductory text, the examples are developed in a rigorous manner, and the derivations follow strict design guidelines and coding practices used for large, complex digital systems. The new edition is completely updated. It presents the hardware design in the SoC context and introduces the hardware-software co-design concept. Instead of treating examples as isolated entities, the book integrates them into a single coherent SoC platform that allows readers to explore both hardware and software “programmability” and develop complex and interesting embedded system projects. The revised edition: Adds four general-purpose IP cores, which are multi-channel PWM (pulse width modulation) controller, I2C controller, SPI controller, and XADC (Xilinx analog-to-digital converter) controller. Introduces a music synthesizer constructed with a DDFS (direct digital frequency synthesis) module and an ADSR (attack-decay-sustain-release) envelop generator. Expands the original video controller into a complete stream-based video subsystem that incorporates a video synchronization circuit, a test pattern generator, an OSD (on-screen display) controller, a sprite generator, and a frame buffer. Introduces basic concepts of software-hardware co-design with Xilinx MicroBlaze MCS soft-core processor. Provides an overview of bus interconnect and interface circuit. Introduces basic embedded system software development. Suggests additional modules and peripherals for interesting and challenging projects. The FPGA Prototyping by VHDL Examples, Second Edition makes a natural companion text for introductory and advanced digital design courses and embedded system course. It also serves as an ideal self-teaching guide for practicing engineers who wish to learn more about this emerging area of interest.




Using Fine Grain Approaches for Highly Reliable Design of FPGA-based Systems in Space


Book Description

Nowadays using SRAM based FPGAs in space missions is increasingly considered due to their flexibility and reprogrammability. A challenge is the devices sensitivity to radiation effects that increased with modern architectures due to smaller CMOS structures. This work proposes fault tolerance methodologies, that are based on a fine grain view to modern reconfigurable architectures. The focus is on SEU mitigation challenges in SRAM based FPGAs which can result in crucial situations.




Learning FPGAs


Book Description

Learn how to design digital circuits with FPGAs (field-programmable gate arrays), the devices that reconfigure themselves to become the very hardware circuits you set out to program. With this practical guide, author Justin Rajewski shows you hands-on how to create FPGA projects, whether you’re a programmer, engineer, product designer, or maker. You’ll quickly go from the basics to designing your own processor. Designing digital circuits used to be a long and costly endeavor that only big companies could pursue. FPGAs make the process much easier, and now they’re affordable enough even for hobbyists. If you’re familiar with electricity and basic electrical components, this book starts simply and progresses through increasingly complex projects. Set up your environment by installing Xilinx ISE and the author’s Mojo IDE Learn how hardware designs are broken into modules, comparable to functions in a software program Create digital hardware designs and learn the basics on how they’ll be implemented by the FPGA Build your projects with Lucid, a beginner-friendly hardware description language, based on Verilog, with syntax similar to C/C++ and Java