Concrete Structures Subjected to Impact and Blast Loadings and Their Combinations


Book Description

Although much research focuses on investigating the responses of reinforced concrete (RC) structures under sole impact or blast loads, the responses of RC structures under a combination of impact and blast loads currently represent a gap in our knowledge. The combined actions of impact and blast loadings may be applied to RC structures during accidental or intentional collision of vessels, vehicles, etc., carrying explosive materials. A comprehensive study on the vulnerability of various structural members is carried out using finite element (FE) simulations under combination of impact and blast loads with the variations of various loading- and structural-related parameters and key parameters. This book introduces various structural analysis approaches for concrete structures when subjected to extreme loads such as impact and blast loadings. The theory of the combinations of impact and blast loads is proposed that can provide primary insights to the specific readers to develop new ideas in impact and blast engineering, including combined actions of extreme loads arising from real-world intentional or accidental events. This book will be of value to students (undergraduate or postgraduate), engineers, and researchers in structural and civil engineering, and specifically, those who are studying and investigating the performances of concrete structures under extreme loads.







Concrete Structures Subjected to Impact and Blast Loadings and Their Combinations


Book Description

Although much research focuses on investigating the responses of reinforced concrete (RC) structures under sole impact or blast loads, the responses of RC structures under a combination of impact and blast loads currently represent a gap in our knowledge. The combined actions of impact and blast loadings may be applied to RC structures during accidental or intentional collision of vessels, vehicles, etc., carrying explosive materials. A comprehensive study on the vulnerability of various structural members is carried out using finite element (FE) simulations under combination of impact and blast loads with the variations of various loading- and structural-related parameters and key parameters. This book introduces various structural analysis approaches for concrete structures when subjected to extreme loads such as impact and blast loadings. The theory of the combinations of impact and blast loads is proposed that can provide primary insights to the specific readers to develop new ideas in impact and blast engineering, including combined actions of extreme loads arising from real-world intentional or accidental events. This book will be of value to students (undergraduate or postgraduate), engineers, and researchers in structural and civil engineering, and specifically, those who are studying and investigating the performances of concrete structures under extreme loads.




Dynamic Behavior of Concrete Structures


Book Description

This book is concerned with the dynamic behavior of reinforced/prestressed concrete structures, such as: buildings and bridges. It discusses how to predict or check the real inelastic behavior of concrete structures subjected to dynamic loads, including equipment loads, earthquake motions, seismic interactions and missile impacts. A number of techniques have recently been developed to assist in evaluating such occurrences. This book is intended to apply structural dynamics to concrete structures and is appropriate as a textbook for an introductory course in dynamic behavior of concrete structures at the upper-undergraduate or graduate level as well as for practicing engineers.










Response of Structures Under Extreme Loading


Book Description

Original research on performance of materials under a wide variety of blasts, impacts, severe loading and fireCritical information for protecting buildings and civil infrastructure against human attack, deterioration and natural disastersTest and design data for new types of concrete, steel and FRP materials This technical book is devoted to the empirical and theoretical analysis of how structures and the materials constituting them perform under the extreme conditions of explosions, fire, and impact. Each of the 119 fully refereed presentations is published here for the first time and was selected because of its original contribution to the science and engineering of how materials, bridges, buildings, tunnels and their components, such as beams and pre-stressed parts, respond to potentially destructive forces. Emphasis is placed on translating empirical data to design recommendations for strengthening structures, including strategies for fire and earthquake protection as well as blast mitigation. Technical details are provided on the development and behavior of new resistant materials, including reinforcements, especially for concrete, steel and their composites.




Time Effects in Concrete Structures


Book Description

The inability of designers of concrete structures to recognize and quantify the non-linear effects of cracking, creep and shrinkage is a common cause of serviceability failure. Such failures include excessive deflection, camber and/or shortening of members and excessive cracking which may cause aesthetic or durability problems. This book provides practising engineers with practical and usable techniques for predicting the non-linear effects of creep and shrinkage on the in-service behaviour of concrete structures. Both cracked and uncracked reinforced, prestressed, and composite members subjected to sustained loads or sustained deformations are considered. Analytical procedures are developed for the calculation of instantaneous and time-dependent stresses and deformations on cross-sections in both simple and continuous members. Numerous self-contained worked examples which clearly illustrate the analytical procedures are included. A wide variety of practical situations is considered. Listings of microcomputer programs for a number of the analyses are also presented.




Design Against Blast


Book Description

Terrorist attacks and other destructive incidents caused by explosives have, in recent years, prompted considerable research and development into the protection of structures against blast loads. For this objective to be achieved, experiments have been performed and theoretical studies carried out to improve our assessments of the intensity as well as the space-time distribution of the resulting blast pressure on the one hand and the consequences of an explosion to the exposed environment on the other.This book aims to enhance awareness on and understanding of these topical issues through a collection of relevant, Transactions of the Wessex Institute of Technology articles written by experts in the field. The book starts with an overview of key physics-based algorithms for blast and fragment environment characterisation, structural response analyses and structural assessments with reference to a terrorist attack in an urban environment and the management of its inherent uncertainties.A subsequent group of articles is concerned with the accurate definition of blast pressure, which is an essential prerequisite to the reliable assessment of the consequences of an explosion. Other papers are concerned with alternative methods for the determination of blast pressure, based on experimental measurements or neural networks. A final group of articles reports investigations on predicting the response of specific structural entities and their contents.The book concludes with studies on the effectiveness of steel-reinforced polymer in improving the performance of reinforced concrete columns and the failure mechanisms of seamless steel pipes used in nuclear industry.