Remote Sensing of Sea Ice in the Northern Sea Route


Book Description

Remote Sensing of Sea Ice in the Northern Sea Route: Studies and Applications initially provides a history of the Northern Sea Route as an important strategic transport route for supporting the northern regions of Russia and cargo transportation between Europe and the Northern Pacific Basin. The authors then describe sea ice conditions in the Eurasian Arctic Seas and, using microwave satellite data, provide a detailed analysis of difficult sea ice conditions. Remote sensing techniques and the basic principles of SAR image formation are described, as well as the major satellite radar systems used for ice studies in the Arctic. The authors take a good look at the use of sensing equipment in experiments, including the ICE WATCH project used for monitoring the Northern Sea Route. The possibilities of using SAR remote sensing for ice navigation in the Northern Sea Route is also detailed, analysing techniques of automatic image processing and interpretation. A study is provided of regional drifting ice, fast ice and river ice in the coastal areas of the Arctic Seas. The book concludes with a review of the practical experience using SAR images for supporting navigation and offshore industrial activity, based on a series of experiments conducted with the Murmansk Shipping Company on board nuclear icebreakers.




Benefits of Remote Sensing of Sea Ice


Book Description




Remote Sensing of Sea Ice and Icebergs


Book Description

Describes the latest remote sensing technologies used to detect ice hazards in the marine environment; map surface currents, sea-state and surface winds; study ice dynamics, over ice transportation, oil spill countermeasures, climate changes and ice reconnaisance. Includes such technologies as acoustic sensing, ice-thickness measurement, passive microwave remote sensing, ground wave and surface-based radars.




Microwave Remote Sensing of Sea Ice


Book Description

Published by the American Geophysical Union as part of the Geophysical Monograph Series, Volume 68. Human activities in the polar regions have undergone incredible changes in this century. Among these changes is the revolution that satellites have brought about in obtaining information concerning polar geophysical processes. Satellites have flown for about three decades, and the polar regions have been the subject of their routine surveillance for more than half that time. Our observations of polar regions have evolved from happenstance ship sightings and isolated harbor icing records to routine global records obtained by those satellites. Thanks to such abundant data, we now know a great deal about the ice-covered seas, which constitute about 10% of the Earth's surface. This explosion of information about sea ice has fascinated scientists for some 20 years. We are now at a point of transition in sea ice studies; we are concerned less about ice itself and more about its role in the climate system. This change in emphasis has been the prime stimulus for this book.




Sea Ice


Book Description

Sea Ice: Physics and Remote Sensing addresses experiences acquired mainly in Canada by researchers in the fields of ice physics and growth history in relation to its polycrystalline structure as well as ice parameters retrieval from remote sensing observations. The volume describes processes operating at the macro- and microscale (e.g., brine entrapment in sea ice, crystallographic texture of ice types, brine drainage mechanisms, etc.). The information is supported by high-quality photographs of ice thin-sections prepared from cores of different ice types, all obtained by leading experts during field experiments in the 1970s through the 1990s, using photographic cameras and scanning microscopy. In addition, this volume presents techniques to retrieve a suite of sea ice parameters (e.g. ice type, concentration, extent, thickness, surface temperature, surface deformation, etc.) from space-borne and airborne sensor data. The breadth of the material on this subject is designed to appeal to researchers and users of remote sensing data who want to develop quick familiarity with the capabilities of this technology or detailed knowledge about major techniques for retrieval of key ice parameters. Volume highlights include: Detailed crystallographic classification of natural sea ice, the key information from which information about ice growth conditions can be inferred. Many examples are presented with material to support qualitative and quantitative interpretation of the data. Methods developed for revealing microstructural characteristics of sea ice and performing forensic investigations. Data sets on radiative properties and satellite observations of sea ice, its snow cover, and surrounding open water. Methods of retrieval of ice surface features and geophysical parameters from remote sensing observations with a focus on critical issues such as the suitability of different sensors for different tasks and data synergism. Sea Ice: Physics and Remote Sensing is intended for a variety of sea ice audiences interested in different aspects of ice related to physics, geophysics, remote sensing, operational monitoring, mechanics, and cryospheric sciences.




Passive Microwave Remote Sensing for Sea Ice Research


Book Description

"Techniques for gathering data by remote sensors on satellites utilized for sea ice research are summarized. Measurement of brightness temperatures by a passive microwave imager converted to maps of total sea ice concentration and to the areal fractions covered by first year and multiyear ice are described. Several ancillary observations, especially by means of automatic data buoys and submarines equipped with upward looking sonars, are needed to improve the validation and interpretation of satellite data. The design and performance characteristics of the Navy's Special Sensor Microwave Imager, expected to be in orbit in late 1985, are described. It is recommended that data from that instrument be processed to a form suitable for research applications and archived in a readily accessible form. The sea ice data products required for research purposes are described and recommendations for their archival and distribution to the scientific community are presented."--NTIS abstract.




Applications of Remote Sensing in Coastal Areas


Book Description

Coastal areas are remarkable regions with high spatiotemporal variability. A large population is affected by their physical and biological processes—resulting from effects on tourism to biodiversity and productivity. Coastal ecosystems perform several critical ecosystem services and functions, such as water oxygenation and nutrients provision, seafloor and beach stabilization (as sediment is controlled and trapped within the rhizomes of the seagrass meadows), carbon burial, as areas for nursery, and as refuge for several commercial and endemic species. Knowledge of the spatial distribution of marine habitats is prerequisite information for the conservation and sustainable use of marine resources. Remote sensing from UAVs to spaceborne sensors is offering a unique opportunity to measure, analyze, quantify, map, and explore the processes on the coastal areas at high temporal frequencies. This Special Issue on “Application of Remote Sensing in Coastal Areas” is specifically addresses those successful applications—from local to regional scale—in coastal environments related to ecosystem productivity, biodiversity, sea level rise.







The Future of Remote Sensing from Space


Book Description

Examines issues related to the development and operation of publicly funded U.S. and foreign civilian remote sensing systems. Explores the military and intelligence use of data gathered by civilian satellites. Examines the outlook for privately funded and operated remote sensing systems. Numerous charts, graphs, tables and photos.




Remote Sensing of Glaciers


Book Description

Glaciers and ice sheets have been melting significantly during recent decades, posing environmental threats at local, regional and global scales. Changes in glaciers are one of the clearest indicators of alterations in regional climate, since they are governed by changes in accumulation (from snowfall) and ablation (by melting of ice). Glacier chan