Beyond Si-Based CMOS Devices


Book Description




Beyond Si-Based CMOS Devices


Book Description

This book focuses on summarizing recent research trends for new beyond-CMOS and beyond-silicon devices, circuits, and architectures for computing. It reports the recent achievements in this field from leading research trends around the globe, specifically focusing on nanoscale beyond silicon materials and devices, functional nanomaterials, nanoscale devices, beyond-CMOS devices materials, and their opportunities and challenges. The book is devoted to the fast-evolving field of modern material science and nanoelectronics, particularly to the physics and technology of functional nanomaterials and devices.




Silicon And Beyond: Advanced Device Models And Circuit Simulators


Book Description

The steady downscaling of device-feature size combined with a rapid increase in circuit complexity as well as the introduction of new device concepts based on non-silicon-material systems poses great challenges for device and circuit designers. One of the major tasks is the development of new and improved device models needed for accurate device and circuit design. Another task is the development of new circuit-simulation tools to handle very large and complex circuits. This book addresses both these issues with up-to-date reviews written by leading experts in the field.The first three chapters of the book discuss advanced device models both for existing technologies and for new, emerging technologies. Among the topics covered are models for MOSFETs, thin-film transitors (TFTs), and compound semiconductor devices, including GaAs HEMTs and HFETs, heterodimensional devices, quantum-tunneling devices, as well as wide-bandgap devices. Chapters 4 and 5 discuss advanced circuit simulators that hold promise for handling circuits of much higher complexity than what is possible for typical state-of-the-art circuit simulators today.




Future Trends in Microelectronics


Book Description

In the summer of 2009, leading professionals from industry, government, and academia gathered for a free-spirited debate on the future trends of microelectronics. This volume represents the summary of their valuable contributions. Providing a cohesive exploration and holistic vision of semiconductor microelectronics, this text answers such questions as: What is the future beyond shrinking silicon devices and the field-effect transistor principle? Are there green pastures beyond the traditional semiconductor technologies? This resource also identifies the direction the field is taking, enabling microelectronics professionals and students to conduct research in an informed, profitable, and forward-looking fashion.




New Materials and Devices Enabling 5G Applications and Beyond


Book Description

New Materials and Devices for 5G Applications and Beyond focuses on the materials, device architectures and enabling integration schemes for 5G applications and emerging technologies. It gives a comprehensive overview of the trade-offs, challenges and unique properties of novel upcoming technologies. Starting from the application side and its requirements, the book examines different technologies under consideration for the different functions, both more conventional to exploratory, and within this context the book provides guidance to the reader on how to possibly optimize the system for a particular application. This book aims at guiding the reader through the technologies required to enable 5G applications, with the main focus on mm-wave frequencies, up to THz. New Materials and Devises for 5G Applications and Beyond is suitable for industrial researchers and development engineers, and researchers in materials science, device engineering and circuit design. - Reviews challenges and emerging opportunities for materials, devices, and integration to enable 5G technologies - Includes discussion of technologies such as RF-MEMs, RF FINFETs, and transistors based on current and emerging materials (InP, GaN, etc.) - Focuses on mm-wave frequencies up to the terahertz regime







Introduction to Semiconductor Devices


Book Description

From semiconductor fundamentals to semiconductor devices used in the telecommunications and computing industries, this 2005 book provides a solid grounding in the most important devices used in the hottest areas of electronic engineering. The book includes coverage of future approaches to computing hardware and RF power amplifiers, and explains how emerging trends and system demands of computing and telecommunications systems influence the choice, design and operation of semiconductors. Next, the field effect devices are described, including MODFETs and MOSFETs. Short channel effects and the challenges faced by continuing miniaturisation are then addressed. The rest of the book discusses the structure, behaviour, and operating requirements of semiconductor devices used in lightwave and wireless telecommunications systems. This is both an excellent senior/graduate text, and a valuable reference for engineers and researchers in the field.




Neuromorphic Computing and Beyond


Book Description

This book discusses and compares several new trends that can be used to overcome Moore’s law limitations, including Neuromorphic, Approximate, Parallel, In Memory, and Quantum Computing. The author shows how these paradigms are used to enhance computing capability as developers face the practical and physical limitations of scaling, while the demand for computing power keeps increasing. The discussion includes a state-of-the-art overview and the essential details of each of these paradigms.




Functional Nanomaterials and Devices for Electronics, Sensors and Energy Harvesting


Book Description

This book contains reviews of recent experimental and theoretical results related to nanomaterials. It focuses on novel functional materials and nanostructures in combination with silicon on insulator (SOI) devices, as well as on the physics of new devices and sensors, nanostructured materials and nano scaled device characterization. Special attention is paid to fabrication and properties of modern low-power, high-performance, miniaturized, portable sensors in a wide range of applications such as telecommunications, radiation control, biomedical instrumentation and chemical analysis. In this book, new approaches exploiting nanotechnologies (such as UTBB FD SOI, Fin FETs, nanowires, graphene or carbon nanotubes on dielectric) to pave a way between “More Moore” and “More than Moore” are considered, in order to create different kinds of sensors and devices which will consume less electrical power, be more portable and totally compatible with modern microelectronics products.




Silicon-on-Insulator Technology and Devices 14


Book Description

This issue of ECS Transactions contains papers on silicon-on-insulator subjects including devices, device physics, modelling, simulations, microelectronics, photonics, nano-technology, integrated circuits, radiation hardness, material characterization, reliability, and sensors