Beyond The Standard Model Iv


Book Description

These proceedings contain over 100 talks on all aspects of Physics Beyond the Standard Model of the strong and electroweak interactions — ranging from Supersymmetry, Grand Unification, Technicolor, Exotic Particles, and CP Violation to Baryogenesis, Dark Matter, Strings and Black Holes — by leading authorities and the most active researchers in High Energy Physics. The goal of the conference is to provide a completely current summary of the most exciting and aesthetically appealing theoretical ideas, especially with regard to their predictions for yet undiscovered new particles, interactions and consequent phenomena. Particular emphasis is placed on current experimental limits and constraints on new physics, and on expectations and predictions regarding our ability to probe and discriminate between the many possibilities through experiments at present and future colliders in the decade(s) to come.




The Standard Model


Book Description

This 2006 book uses the standard model as a vehicle for introducing quantum field theory.




Particle Physics beyond the Standard Model


Book Description

The Standard Model of elementary particles and interactions is one of the best tested theories in physics. It has been found to be in remarkable agreement with experiment, and its validity at the quantum level has been successfully probed in the electroweak sector. In spite of its experimental successes, though, the Standard Model suffers from a number of limitations, and is likely to be an incomplete theory. It contains many arbitrary parameters; it does not include gravity, the fourth elementary interaction; it does not provide an explanation for the hierarchy between the scale of electroweak interactions and the Planck scale, characteristic of gravitational interactions; and finally, it fails to account for the dark matter and the baryon asymmetry of the universe. This led particle theorists to develop and study various extensions of the Standard Model, such as supersymmetric theories, Grand Unified Theories or theories with extra space-time dimensions - most of which have been proposed well before the experimental verification of the Standard Model. The coming generation of experimental facilities (such as high-energy colliders, B-physics experiments, neutrino superbeams, as well as astrophysical and cosmological observational facilities) will allow us to test the predictions of these theories and to deepen our understanding of the fundamental laws of nature.This book is a collection of lectures given in August 2005 at the Les Houches Summer School on Particle Physics beyond the Standard Model. It provides a pedagogical introduction to the various aspects of particle physics beyond the Standard Model, covering each topic from the basics to the most recent developments: supersymmetric theories, Grand Unified Theories, theories with extra dimensions, flavour physics and CP violation, neutrino physics, astroparticle physics and cosmology.·Provides a pedagogical introduction to particle physics beyond the Standard Model·Covers the various aspects of particle physics beyond the Standard Model·Addresses each topic from the basics to the most recent developments·Addresses both the theoretical and phenomenological aspects of the subject·Written in a pedagogical style by leading experts in the field




Particle Physics Reference Library


Book Description

This first open access volume of the handbook series contains articles on the standard model of particle physics, both from the theoretical and experimental perspective. It also covers related topics, such as heavy-ion physics, neutrino physics and searches for new physics beyond the standard model. A joint CERN-Springer initiative, the "Particle Physics Reference Library" provides revised and updated contributions based on previously published material in the well-known Landolt-Boernstein series on particle physics, accelerators and detectors (volumes 21A, B1,B2,C), which took stock of the field approximately one decade ago. Central to this new initiative is publication under full open access




Gauge Theory of Weak Decays


Book Description

This is the first advanced, systematic and comprehensive look at weak decays in the framework of gauge theories. Included is a large spectrum of topics, both theoretical and experimental. In addition to explicit advanced calculations of Feynman diagrams and the study of renormalization group strong interaction effects in weak decays, the book is devoted to the Standard Model Effective Theory, dominating present phenomenology in this field, and to new physics models with the goal of searching for new particles and interactions through quantum fluctuations. This book will benefit theorists, experimental researchers, and Ph.D. students working on flavour physics and weak decays as well as physicists interested in physics beyond the Standard Model. In its concern for the search for new phenomena at short distance scales through the interplay between theory and experiment, this book constitutes a travel guide to physics far beyond the scales explored by the Large Hadron Collider at CERN.




The Standard Theory of Particle Physics


Book Description

The book gives a quite complete and up-to-date picture of the Standard Theory with an historical perspective, with a collection of articles written by some of the protagonists of present particle physics. The theoretical developments are described together with the most up-to-date experimental tests, including the discovery of the Higgs Boson and the measurement of its mass as well as the most precise measurements of the top mass, giving the reader a complete description of our present understanding of particle physics.




Particle Dark Matter


Book Description

Describes the dark matter problem in particle physics, astrophysics and cosmology for graduate students and researchers.




Introduction to the Standard Model and Beyond


Book Description

The Standard Model of particle physics is an amazingly successful theory describing the fundamental particles and forces of nature. This text, written for a two-semester graduate course on the Standard Model, develops a practical understanding of the theoretical concepts it's built upon, to prepare students to enter research. The author takes a historical approach to demonstrate to students the process of discovery which is often overlooked in other textbooks, presenting quantum field theory and symmetries as the necessary tools for describing and understanding the Standard Model. He develops these tools using a basic understanding of quantum mechanics and classical field theory, such as Maxwell's electrodynamics, before discussing the important role that Noether's theorem and conserved charges play in the theory. Worked examples feature throughout the text, while homework exercises are included for the first five parts, with solutions available online for instructors. Inspired by the author's own teaching experience, suggestions for independent research topics have been provided for the second-half of the course, which students can then present to the rest of the class.




Journeys Beyond The Standard Model


Book Description

This book should be at the side of every particle and nuclear physics graduate student and professional. Journeys Beyond the Standard Model starts with a detailed and modern account of the Standard Model of elementary particle physics, the paradigm of particle physics for the last twenty years. Its timely release coincides with the recent dramatic discovery that the neutrino has a finite mass, which is the first indication that the Standard Model is an incomplete description of fundamental physics at short distances. This book presents in detail three possible generalizations of the Standard Model: its extension to accommodate neutrino masses; its extension to avoid CP violation in the strong interactions by introducing a new particle, the axion; and finally, its generalization to low-energy supersymmetry, which provides a link between the standard model and Einstein's theory of general relativity.This graduate text complements the author's previous book, Modern Field Theory: A Primer, which focuses on the methodology of particle physics. Its aim is to give students and professional physicists alike a thorough understanding of the phenomena described by the Standard Model, while keeping track of the most recent and cutting-edge principles of elementary particle physics.




Quantum Field Theory and the Standard Model


Book Description

A modern introduction to quantum field theory for graduates, providing intuitive, physical explanations supported by real-world applications and homework problems.