Bias Temperature Instability for Devices and Circuits


Book Description

This book provides a single-source reference to one of the more challenging reliability issues plaguing modern semiconductor technologies, negative bias temperature instability. Readers will benefit from state-of-the art coverage of research in topics such as time dependent defect spectroscopy, anomalous defect behavior, stochastic modeling with additional metastable states, multiphonon theory, compact modeling with RC ladders and implications on device reliability and lifetime.




Fundamentals of Bias Temperature Instability in MOS Transistors


Book Description

This book aims to cover different aspects of Bias Temperature Instability (BTI). BTI remains as an important reliability concern for CMOS transistors and circuits. Development of BTI resilient technology relies on utilizing artefact-free stress and measurement methods and suitable physics-based models for accurate determination of degradation at end-of-life and understanding the gate insulator process impact on BTI. This book discusses different ultra-fast characterization techniques for recovery artefact free BTI measurements. It also covers different direct measurements techniques to access pre-existing and newly generated gate insulator traps responsible for BTI. The book provides a consistent physical framework for NBTI and PBTI respectively for p- and n- channel MOSFETs, consisting of trap generation and trapping. A physics-based compact model is presented to estimate measured BTI degradation in planar Si MOSFETs having differently processed SiON and HKMG gate insulators, in planar SiGe MOSFETs and also in Si FinFETs. The contents also include a detailed investigation of the gate insulator process dependence of BTI in differently processed SiON and HKMG MOSFETs. The book then goes on to discuss Reaction-Diffusion (RD) model to estimate generation of new traps for DC and AC NBTI stress and Transient Trap Occupancy Model (TTOM) to estimate charge occupancy of generated traps and their contribution to BTI degradation. Finally, a comprehensive NBTI modeling framework including TTOM enabled RD model and hole trapping to predict time evolution of BTI degradation and recovery during and after DC stress for different stress and recovery biases and temperature, during consecutive arbitrary stress and recovery cycles and during AC stress at different frequency and duty cycle. The contents of this book should prove useful to academia and professionals alike.




Long-Term Reliability of Nanometer VLSI Systems


Book Description

This book provides readers with a detailed reference regarding two of the most important long-term reliability and aging effects on nanometer integrated systems, electromigrations (EM) for interconnect and biased temperature instability (BTI) for CMOS devices. The authors discuss in detail recent developments in the modeling, analysis and optimization of the reliability effects from EM and BTI induced failures at the circuit, architecture and system levels of abstraction. Readers will benefit from a focus on topics such as recently developed, physics-based EM modeling, EM modeling for multi-segment wires, new EM-aware power grid analysis, and system level EM-induced reliability optimization and management techniques. Reviews classic Electromigration (EM) models, as well as existing EM failure models and discusses the limitations of those models; Introduces a dynamic EM model to address transient stress evolution, in which wires are stressed under time-varying current flows, and the EM recovery effects. Also includes new, parameterized equivalent DC current based EM models to address the recovery and transient effects; Presents a cross-layer approach to transistor aging modeling, analysis and mitigation, spanning multiple abstraction levels; Equips readers for EM-induced dynamic reliability management and energy or lifetime optimization techniques, for many-core dark silicon microprocessors, embedded systems, lower power many-core processors and datacenters.




Recent Advances in PMOS Negative Bias Temperature Instability


Book Description

This book covers advances in Negative Bias Temperature Instability (NBTI) and will prove useful to researchers and professionals in the semiconductor devices areas. NBTI continues to remain as an important reliability issue for CMOS transistors and circuits. Development of NBTI resilient technology relies on utilizing suitable stress conditions, artifact free measurements and accurate physics-based models for the reliable determination of degradation at end-of-life, as well as understanding the process, material and device architectural impacts. This book discusses: Ultra-fast measurements and modelling of parametric drift due to NBTI in different transistor architectures: planar bulk and FDSOI p-MOSFETs, p-FinFETs and GAA-SNS p-FETs, with Silicon and Silicon Germanium channels. BTI Analysis Tool (BAT), a comprehensive physics-based framework, to model the measured time kinetics of parametric drift during and after DC and AC stress, at different stress and recovery biases and temperature, as well as pulse duty cycle and frequency. The Reaction Diffusion (RD) model is used for generated interface traps, Transient Trap Occupancy Model (TTOM) for charge occupancy of the generated interface traps and their contribution, Activated Barrier Double Well Thermionic (ABDWT) model for hole trapping in pre-existing bulk gate insulator traps, and Reaction Diffusion Drift (RDD) model for bulk trap generation in the BAT framework; NBTI parametric drift is due to uncorrelated contributions from the trap generation (interface, bulk) and trapping processes. Analysis and modelling of Nitrogen incorporation into the gate insulator, Germanium incorporation into the channel, and mechanical stress effects due to changes in the transistor layout or device dimensions; similarities and differences of (100) surface dominated planar and GAA MOSFETs and (110) sidewall dominated FinFETs are analysed.




Nano-CMOS and Post-CMOS Electronics


Book Description

Continuing from volume 1, this volume outlines circuit- and system-level design approaches and issues for these devices. Topics covered include self-healing analog/RF circuits; on-chip gate delay variability measurement in scaled technology; FinFET SRAM circuits; nanoscale FinFET devices for PVT aware SRAM; low leakage variability aware CMOS logic circuits; thermal effects in MWCNT VLSI interconnects; an accurate PVT-aware statistical logic library for nano-CMOS integrated circuits; SPICEless RTL design optimization of nano-electronic digital integrated circuits; power-delay trade-off driven optimal scheduling of CDFGs during high level synthesis; green on-chip inductors for three-dimensional integrated circuits; 3D NoC -- a promising alternative for tomorrow's nano-system design; and DNA computing.




Innovations in Electronics and Communication Engineering


Book Description

This book gathers selected papers presented at the 7th International Conference on Innovations in Electronics and Communication Engineering, held at Guru Nanak Institutions in Hyderabad, India. It highlights contributions by researchers, technocrats and experts regarding the latest technologies in electronic and communication engineering, and addresses various aspects of communication engineering, including signal processing, VLSI design, embedded systems, wireless communications, and electronics and communications in general. Covering cutting-edge technologies, the book offers a valuable resource, especially for young researchers.




Low-Power CMOS Wireless Communications


Book Description

Low-Power CMOS Wireless Communications: A Wideband CDMA System Design focuses on the issues behind the development of a high-bandwidth, silicon complementary metal-oxide silicon (CMOS) low-power transceiver system for mobile RF wireless data communications. In the design of any RF communications system, three distinct factors must be considered: the propagation environment in question, the multiplexing and modulation of user data streams, and the complexity of hardware required to implement the desired link. None of these can be allowed to dominate. Coupling between system design and implementation is the key to simultaneously achieving high bandwidth and low power and is emphasized throughout the book. The material presented in Low-Power CMOS Wireless Communications: A Wideband CDMA System Design is the result of broadband wireless systems research done at the University of California, Berkeley. The wireless development was motivated by a much larger collaborative effort known as the Infopad Project, which was centered on developing a mobile information terminal for multimedia content - a wireless `network computer'. The desire for mobility, combined with the need to support potentially hundreds of users simultaneously accessing full-motion digital video, demanded a wireless solution that was of far lower power and higher data rate than could be provided by existing systems. That solution is the topic of this book: a case study of not only wireless systems designs, but also the implementation of such a link, down to the analog and digital circuit level.




Complementary Metal Oxide Semiconductor


Book Description

In this book, Complementary Metal Oxide Semiconductor ( CMOS ) devices are extensively discussed. The topics encompass the technology advancement in the fabrication process of metal oxide semiconductor field effect transistors or MOSFETs (which are the fundamental building blocks of CMOS devices) and the applications of transistors in the present and future eras. The book is intended to provide information on the latest technology development of CMOS to researchers, physicists, as well as engineers working in the field of semiconductor transistor manufacturing and design.




Managing Temperature Effects in Nanoscale Adaptive Systems


Book Description

This book discusses new techniques for detecting, controlling, and exploiting the impacts of temperature variations on nanoscale circuits and systems. A new sensor system is described that can determine the temperature dependence as well as the operating temperature to improve system reliability. A new method is presented to control a circuit’s temperature dependence by individually tuning pull-up and pull-down networks to their temperature-insensitive operating points. This method extends the range of supply voltages that can be made temperature-insensitive, achieving insensitivity at nominal voltage for the first time.