Flattening the Earth


Book Description

Cartographers have long grappled with the impossibility of portraying the earth in two dimensions. To solve this problem, mapmakers have created map projections. This work discusses and illustrates the known map projections from before 500BC to the present, with facts on their origins and use.




Coordinate Systems and Map Projections


Book Description

A revised and expanded new edition of the definitive English work on map projections. The revisions take into account the huge advances in geometrical geodesy which have occurred since the early years of satellite geodesy. The detailed configuration of the geoid resulting from the GEOS and SEASAT altimetry measurements are now taken into consideration. Additionally, the chapter on computation of map projections is updated bearing in mind the availability of pocket calculators and microcomputers. Analytical derivation of some map projections including examples of pseudocylindrical and polyconic projections is also covered. Work undertaken in the USA and USSR on the creation of suitable map projections obtained through numerical analysis has been included. The book concludes with a chapter on the abuse and misrepresentation of map projections. An invaluable reference source for professional cartographers and all those interested in the fundamental problems of mapping the Earth.







Map Projections


Book Description

Map projection concerns the science of mathematical cartography, the techniques by which the Earth's dimensions, shape and features are translated in map form, be that two-dimensional paper or two- or three- dimensional electronic representations. The central focus of this book is on the theory of map projections. Mathematical cartography also takes in map scales and their variation, the division of maps into sets of sheets and nomenclature, and addresses the problems of making measurements and conducting investigations which make use of geodetic measurements and the development of graphical methods for solving problems of spherical trigonometry, marine- and aeronavigation, astronomy and even crystallography.




Map Projections


Book Description

In the context of Geographical Information Systems (GIS) the book offers a timely review of Map Projections. The first chapters are of foundational type. We introduce the mapping from a left Riemann manifold to a right one specified as conformal, equiaerial and equidistant, perspective and geodetic. In particular, the mapping from a Riemann manifold to a Euclidean manifold ("plane") and the design of various coordinate systems are reviewed . A speciality is the treatment of surfaces of Gaussian curvature zero. The largest part is devoted to the mapping the sphere and the ellipsoid-of-revolution to tangential plane, cylinder and cone (pseudo-cone) using the polar aspect, transverse as well as oblique aspect. Various Geodetic Mappings as well as the Datum Problem are reviewed. In the first extension we introduce optimal map projections by variational calculus for the sphere, respectively the ellipsoid generating harmonic maps. The second extension reviews alternative maps for structures , namely torus (pneu), hyperboloid (cooling tower), paraboloid (parabolic mirror), onion shape (church tower) as well as clothoid (Hight Speed Railways) used in Project Surveying. Third, we present the Datum Transformation described by the Conformal Group C10 (3) in a threedimensional Euclidean space , a ten parameter conformal transformation. It leaves infinitesimal angles and distance ratios equivariant. Numerical examples from classical and new map projections as well as twelve appendices document the Wonderful World of Map Projections.




Cartographic Science


Book Description

Geographic books routinely introduce map projections without providing mathematical explanations of projections and few delve into complex mathematical development or cover the breadth of projections. From basic projecting to advanced transformations, Cartographic Science: A Compendium of Map Projections, with Derivations is a comprehensive reference that offers an explanation of the science of cartography. The book is a compilation of more than a hundred map projections, from classic conics to contemporary transformations using complex variables. Starting from widely described geometric projecting onto flat paper, cylinder, and cone and then progressing through several layers of mathematics to reach modern projections, the author maximizes the application of one layer of complex mathematics before continuing on to the next. He also supplies numerous one-page tutorials that review terms and methodologies, helping minimize the challenges of unfamiliar mathematical territory. Divided into four parts, the first section examines the shape and size of the Earth, then proceeds to investigate the means for relating the curved surface to a flat surface, and addresses scaling. It goes on to cover pertinent principles of projection including literal projecting, true but synthetic projections, secantal projections, pseudocylindrical projections, and pseudoconical projections, as well as the other variants of more serious projections. The book concludes by looking at factors influencing Mean Sea Level and notes the cartographic aspects of current developments. Cartographic Science: A Compendium of Map Projections, with Derivations explains the mathematical development for a large range of projections within a framework of the different cartographic methodologies. This carefully paced book covers more projections, with gentle and progressive immersion in the mathematics involved, than any other book of its kind.







Choosing a Map Projection


Book Description

This book offers a much-needed critical approach to the intelligent use of the wide variety of map projections that are rapidly and inexpensively available today. It also discusses the distortions that are immanent in any map projection. A well-chosen map projection is one in which extreme distortions are smaller than those in any other projection used to map the same area and in which the map properties match its purpose. Written by leading experts in the field, including W. Tobler, F.C. Kessler, S.E. Battersby, M.P. Finn, K.C. Clarke, V.S. Tikunov, H. Hargitai, B. Jenny and N. Frančula. This book is designed for use by laymen. The book editors are M. Lapaine and E.L. Usery, Chair and Vice-Chair, respectively, of the ICA Commission on Map Projections for the period 2011-2015.




Rhumb Lines and Map Wars


Book Description

In Rhumb Lines and Map Wars, Mark Monmonier offers an insightful, richly illustrated account of the controversies surrounding Flemish cartographer Gerard Mercator's legacy. He takes us back to 1569, when Mercator announced a clever method of portraying the earth on a flat surface, creating the first projection to take into account the earth's roundness. As Monmonier shows, mariners benefited most from Mercator's projection, which allowed for easy navigation of the high seas with rhumb lines—clear-cut routes with a constant compass bearing—for true direction. But the projection's popularity among nineteenth-century sailors led to its overuse—often in inappropriate, non-navigational ways—for wall maps, world atlases, and geopolitical propaganda. Because it distorts the proportionate size of countries, the Mercator map was criticized for inflating Europe and North America in a promotion of colonialism. In 1974, German historian Arno Peters proffered his own map, on which countries were ostensibly drawn in true proportion to one another. In the ensuing "map wars" of the 1970s and 1980s, these dueling projections vied for public support—with varying degrees of success. Widely acclaimed for his accessible, intelligent books on maps and mapping, Monmonier here examines the uses and limitations of one of cartography's most significant innovations. With informed skepticism, he offers insightful interpretations of why well-intentioned clerics and development advocates rallied around the Peters projection, which flagrantly distorted the shape of Third World nations; why journalists covering the controversy ignored alternative world maps and other key issues; and how a few postmodern writers defended the Peters worldview with a self-serving overstatement of the power of maps. Rhumb Lines and Map Wars is vintage Monmonier: historically rich, beautifully written, and fully engaged with the issues of our time.




Datums and Map Projections for Remote Sensing, GIS, and Surveying


Book Description

New methods of acquiring spatial data and the advent of geographic information systems (GIS) for handling and manipulating data mean that we no longer must rely on paper maps from a single source, but can acquire, combine, and customize spatial data as needed. To ensure quality results, however, one must fully understand the diverse coordinate frameworks upon which the data are based. Datums and Map Projections provides clear, accessible explanations of the terminology, relationships, transformations, and computations involved in combining data from different sources. The first half of the book focuses on datums, exploring different coordinate systems and datums, including two- and three-dimensional representations of Earth coordinates and vertical datums. After an overview of the global positioning system (GPS), the author introduces the fundamentals of map projections and examines the different types. He then presents models and procedures for transforming directly between data sets. The final chapter presents case studies of projects that illustrate the types of problems often encountered in practice. Newcomers to the field will welcome this treatment that, instead of detailed mathematics, uses lucid explanations and numerous examples to unravel the complexities of the subject. For more experienced readers, the book is a valuable reference that answers specific questions and imparts a better understanding of transformation operations and principles. Features