Survey Design and Seismic Acquisition for Land, Marine, and In-between in Light of New Technology and Techniques


Book Description

Seismic surveys are subject to many different design criteria, but often the parameters are established based on an outdated view of how data can be acquired and how it will be processed. This book highlights what is possible using modern acquisition methods, techniques, and equipment, and how these may impact seismic survey design and acquisition.




Acquisition and Processing of Marine Seismic Data


Book Description

Acquisition and Processing of Marine Seismic Data demonstrates the main principles, required equipment, and suitable selection of parameters in 2D/3D marine seismic data acquisition, as well as theoretical principles of 2D marine seismic data processing and their practical implications. Featuring detailed datasets and examples, the book helps to relate theoretical background to real seismic data. This reference also contains important QC analysis methods and results both for data acquisition and marine seismic data processing. Acquisition and Processing of Marine Seismic Data is a valuable tool for researchers and students in geophysics, marine seismics, and seismic data, as well as for oil and gas exploration. - Contains simple step-by-step diagrams of the methodology used in the processing of seismic data to demonstrate the theory behind the applications - Combines theory and practice, including extensive noise, QC, and velocity analyses, as well as examples for beginners in the seismic operations market - Includes simple illustrations to provide to the audience an easy understanding of the theoretical background - Contains enhanced field data examples and applications




The Marine Seismic Source


Book Description

This book is about marine seismic sources, their history, their physical principles and their deconvolution. It is particularly accented towards the physical aspects rather than the mathematical principles of signature generation in water as it is these aspects which the authors have found to be somewhat neglected. A huge amount of research has been carried out by both commercial and academic institutions over the years and the resulting literature is a little daunting, to say the least. In spite of this, the subject is intrinsically very simple and relies on a very few fundamental physical principles, a somewhat larger number of heuristic principles and a refreshingly small amount of blunderbuss mathematics. As such it is still one of those subjects in which the gifted practical engineer reigns supreme and from which many of the important advances have originated. In Chapter 1 of the book, the underlying physics and concepts are discussed, including pressure and wave propagation, bubble motion, virtual images and the factors determining choice of source. In marine reflection seismology, almost all of the seismic data acquired currently is done with either the airgun or the watergun, which rely on the expulsion of air and water respectively to generate acoustic energy. As a consequence, the discussion in this chapter is geared towards these two sources, as is much of the rest of the book.




3D Seismic Survey Design


Book Description

Details the properties of 3D acquisition geometries and shows how they naturally lead to the 3D symmetric sampling approach to 3D survey design. Many examples are used to illustrate choices of acquisition parameters, and the link between survey parameters and noise suppression as well as imaging is an intrinsic part of the contents.




A Handbook for Seismic Data Acquisition in Exploration


Book Description

This illustration-rich book explains seismic data acquisition operations from a fundamental and practical standpoint, ranging from land to marine 2D methods to 3D seismic methods. Helpful to geologists, field crews, exploration managers, petroleum engineers, and geophysicists, each chapter concludes with exercises on field data recording problems.




Seismic Ambient Noise


Book Description

A comprehensive overview of seismic ambient noise, covering observations, physical origins, modelling, processing methods and applications in imaging and monitoring.




Introduction to Petroleum Seismology, second edition


Book Description

Introduction to Petroleum Seismology, second edition (SEG Investigations in Geophysics Series No. 12) provides the theoretical and practical foundation for tackling present and future challenges of petroleum seismology especially those related to seismic survey designs, seismic data acquisition, seismic and EM modeling, seismic imaging, microseismicity, and reservoir characterization and monitoring. All of the chapters from the first edition have been improved and/or expanded. In addition, twelve new chapters have been added. These new chapters expand topics which were only alluded to in the first edition: sparsity representation, sparsity and nonlinear optimization, near-simultaneous multiple-shooting acquisition and processing, nonuniform wavefield sampling, automated modeling, elastic-electromagnetic mathematical equivalences, and microseismicity in the context of hydraulic fracturing. Another major modification in this edition is that each chapter contains analytical problems as well as computational problems. These problems include MatLab codes, which may help readers improve their understanding of and intuition about these materials. The comprehensiveness of this book makes it a suitable text for undergraduate and graduate courses that target geophysicists and engineers as well as a guide and reference work for researchers and professionals in academia and in the petroleum industry.