Practical Bifurcation and Stability Analysis


Book Description

Probably the first book to describe computational methods for numerically computing steady state and Hopf bifurcations. Requiring only a basic knowledge of calculus, and using detailed examples, problems, and figures, this is an ideal textbook for graduate students.




Numerical Bifurcation Analysis for Reaction-Diffusion Equations


Book Description

This monograph is the first to provide readers with numerical tools for a systematic analysis of bifurcation problems in reaction-diffusion equations. Many examples and figures illustrate analysis of bifurcation scenario and implementation of numerical schemes. Readers will gain a thorough understanding of numerical bifurcation analysis and the necessary tools for investigating nonlinear phenomena in reaction-diffusion equations.




Elements of Applied Bifurcation Theory


Book Description

Providing readers with a solid basis in dynamical systems theory, as well as explicit procedures for application of general mathematical results to particular problems, the focus here is on efficient numerical implementations of the developed techniques. The book is designed for advanced undergraduates or graduates in applied mathematics, as well as for Ph.D. students and researchers in physics, biology, engineering, and economics who use dynamical systems as model tools in their studies. A moderate mathematical background is assumed, and, whenever possible, only elementary mathematical tools are used. This new edition preserves the structure of the first while updating the context to incorporate recent theoretical developments, in particular new and improved numerical methods for bifurcation analysis.




Bifurcation Analysis in Geomechanics


Book Description

This book examines the experimental and theoretical aspects of bifurcation analysis as applied to geomechanics. Coverage includes basic continuum mechanics for dry and fluid unfiltrated porous media, bifurcation and stability analyses applied to layered geological media and granular materials, and theories for generalized continua as applied to materials with microstructure and in relation to strain localization phenomena.




Dynamical Systems, Bifurcation Analysis and Applications


Book Description

This book is the result of ​Southeast Asian Mathematical Society (SEAMS) School 2018 on Dynamical Systems and Bifurcation Analysis (DySBA). It addresses the latest developments in the field of dynamical systems, and highlights the importance of numerical continuation studies in tracking both stable and unstable steady states and bifurcation points to gain better understanding of the dynamics of the systems. The SEAMS School 2018 on DySBA was held in Penang from 6th to 13th August at the School of Mathematical Sciences, Universiti Sains Malaysia.The SEAMS Schools are part of series of intensive study programs that aim to provide opportunities for an advanced learning experience in mathematics via planned lectures, contributed talks, and hands-on workshop. This book will appeal to those postgraduates, lecturers and researchers working in the field of dynamical systems and their applications. Senior undergraduates in Mathematics will also find it useful.




Methods of Bifurcation Theory


Book Description

An alternative title for this book would perhaps be Nonlinear Analysis, Bifurcation Theory and Differential Equations. Our primary objective is to discuss those aspects of bifurcation theory which are particularly meaningful to differential equations. To accomplish this objective and to make the book accessible to a wider we have presented in detail much of the relevant background audience, material from nonlinear functional analysis and the qualitative theory of differential equations. Since there is no good reference for some of the mate rial, its inclusion seemed necessary. Two distinct aspects of bifurcation theory are discussed-static and dynamic. Static bifurcation theory is concerned with the changes that occur in the structure of the set of zeros of a function as parameters in the function are varied. If the function is a gradient, then variational techniques play an important role and can be employed effectively even for global problems. If the function is not a gradient or if more detailed information is desired, the general theory is usually local. At the same time, the theory is constructive and valid when several independent parameters appear in the function. In differential equations, the equilibrium solutions are the zeros of the vector field. Therefore, methods in static bifurcation theory are directly applicable.




Numerical Bifurcation Analysis of Maps


Book Description

This book combines a comprehensive state-of-the-art analysis of bifurcations of discrete-time dynamical systems with concrete instruction on implementations (and example applications) in the free MATLAB® software MatContM developed by the authors. While self-contained and suitable for independent study, the book is also written with users in mind and is an invaluable reference for practitioners. Part I focuses on theory, providing a systematic presentation of bifurcations of fixed points and cycles of finite-dimensional maps, up to and including cases with two control parameters. Several complementary methods, including Lyapunov exponents, invariant manifolds and homoclinic structures, and parts of chaos theory, are presented. Part II introduces MatContM through step-by-step tutorials on how to use the general numerical methods described in Part I for simple dynamical models defined by one- and two-dimensional maps. Further examples in Part III show how MatContM can be used to analyze more complicated models from modern engineering, ecology, and economics.




Hopf Bifurcation Analysis


Book Description

This book is devoted to the frequency domain approach, for both regular and degenerate Hopf bifurcation analyses. Besides showing that the time and frequency domain approaches are in fact equivalent, the fact that many significant results and computational formulas obtained in the studies of regular and degenerate Hopf bifurcations from the time domain approach can be translated and reformulated into the corresponding frequency domain setting, and be reconfirmed and rediscovered by using the frequency domain methods, is also explained. The description of how the frequency domain approach can be used to obtain several types of standard bifurcation conditions for general nonlinear dynamical systems is given as well as is demonstrated a very rich pictorial gallery of local bifurcation diagrams for nonlinear systems under simultaneous variations of several system parameters. In conjunction with this graphical analysis of local bifurcation diagrams, the defining and nondegeneracy conditions for several degenerate Hopf bifurcations is presented. With a great deal of algebraic computation, some higher-order harmonic balance approximation formulas are derived, for analyzing the dynamical behavior in small neighborhoods of certain types of degenerate Hopf bifurcations that involve multiple limit cycles and multiple limit points of periodic solutions. In addition, applications in chemical, mechanical and electrical engineering as well as in biology are discussed. This book is designed and written in a style of research monographs rather than classroom textbooks, so that the most recent contributions to the field can be included with references.




Frequency-domain Approach To Hopf Bifurcation Analysis: Continuous Time-delayed Systems


Book Description

This book is devoted to the study of an effective frequency-domain approach, based on systems control theory, to compute and analyze several types of standard bifurcation conditions for general continuous-time nonlinear dynamical systems. A very rich pictorial gallery of local bifurcation diagrams for such nonlinear systems under simultaneous variations of several system parameters is presented. Some higher-order harmonic balance approximation formulas are derived for analyzing the oscillatory dynamics in small neighborhoods of certain types of Hopf and degenerate Hopf bifurcations.The frequency-domain approach is then extended to the large class of delay-differential equations, where the time delays can be either discrete or distributed. For the case of discrete delays, two alternatives are presented, depending on the structure of the underlying dynamical system, where the more general setting is then extended to the case of distributed time-delayed systems. Some representative examples in engineering and biology are discussed.




Bifurcation Analysis


Book Description

Bifurcation theory has made a very fast upswing in the last fifteen years. Roughly speaking it generalises to dynamic systems the pos sibility of mUltiple solutions, a possibility already recognised in static systems - physical, chemical, social - when operating far from their equilibrium states. It so happened that quite a few staff members of the Erasmus University Rotterdam were thinking along those lines about certain aspects of their disciplines. To have a number of specialists and potential "fans" convene to discuss various aspects of bifurcation al thinking, seemed a natural development. The resulting papers were judged to be of interest to a larger public, and as such are logically regrouped in this volume, one in a series of studies resulting from the activities of the Steering Committee on Interdisciplinary Studies of the Erasmus University, Rotterdam. Although the volume is perhaps multidisciplinary rather than interdisciplinary - the interdisciplinary aspect being only "latent" -, as a "soft" interdisciplinary exercise (the application of formal structures of one discipline to another) it has a right to interdisciplinary existence! This book could not have been published without a generous grant of the University Foundation of the Erasmus University Rotterdam, which allowed the conference to be held and the resulting papers to be published; that generosity is gratefully acknowledged.