Bifurcation Theory, Mechanics and Physics


Book Description

This volume presents the proceedings of a colloquium inspired by the former President of the French Mathematical Society, Michel Herve. The aim was to promote the development of mathematics through applications. Since the ancient supports the new, it seemed appropriate to center the theoretical conferences on new subjects. Since the world is movement and creation, the theoretical conferences were planned on mechanics (movement) and bifurcation theory (creation). Five aspects of mechanics were to be presented, but, unfortunately, it has not been possible to include the statis­ tical mechanics aspect. So that only four aspects are presented: Classical mechanics (Hamiltonian, Lagrangian, Poisson) (W.N. Tulczyjew, J .E. l-lhite, C.M. MarIe). - Quantum mechanics (in particular the passage from the classi­ cal to the quantum approach and the problem of finding the explicit solution of Schrodinger's equation)(M. Cahen and S. Gutt, J. Leray). Fluid mechanics (meaning problems involving partial differ­ ential equations. One of the speakers we hoped would attend the conference was in Japan at the time, however his lecture is presented in these proceedings.) (J.F. Pommaret, H.I-l. Shi) - Mathematical "information" theory (S. Guiasll) Traditional physical arguments are characterized by their great homogeneity, and mathematically expressed by the compactness prop­ erty. In such cases, there is a kind of duality between locality and globality, which allows the use of the infinitesimal in global considerations.




Elementary Stability and Bifurcation Theory


Book Description

This substantially revised second edition teaches the bifurcation of asymptotic solutions to evolution problems governed by nonlinear differential equations. Written not just for mathematicians, it appeals to the widest audience of learners, including engineers, biologists, chemists, physicists and economists. For this reason, it uses only well-known methods of classical analysis at foundation level, while the applications and examples are specially chosen to be as varied as possible.




Bifurcation Theory


Book Description

In the past three decades, bifurcation theory has matured into a well-established and vibrant branch of mathematics. This book gives a unified presentation in an abstract setting of the main theorems in bifurcation theory, as well as more recent and lesser known results. It covers both the local and global theory of one-parameter bifurcations for operators acting in infinite-dimensional Banach spaces, and shows how to apply the theory to problems involving partial differential equations. In addition to existence, qualitative properties such as stability and nodal structure of bifurcating solutions are treated in depth. This volume will serve as an important reference for mathematicians, physicists, and theoretically-inclined engineers working in bifurcation theory and its applications to partial differential equations.




Galileo Unbound


Book Description

Galileo Unbound traces the journey that brought us from Galileo's law of free fall to today's geneticists measuring evolutionary drift, entangled quantum particles moving among many worlds, and our lives as trajectories traversing a health space with thousands of dimensions. Remarkably, common themes persist that predict the evolution of species as readily as the orbits of planets or the collapse of stars into black holes. This book tells the history of spaces of expanding dimension and increasing abstraction and how they continue today to give new insight into the physics of complex systems. Galileo published the first modern law of motion, the Law of Fall, that was ideal and simple, laying the foundation upon which Newton built the first theory of dynamics. Early in the twentieth century, geometry became the cause of motion rather than the result when Einstein envisioned the fabric of space-time warped by mass and energy, forcing light rays to bend past the Sun. Possibly more radical was Feynman's dilemma of quantum particles taking all paths at once — setting the stage for the modern fields of quantum field theory and quantum computing. Yet as concepts of motion have evolved, one thing has remained constant, the need to track ever more complex changes and to capture their essence, to find patterns in the chaos as we try to predict and control our world.




Bifurcation Theory And Methods Of Dynamical Systems


Book Description

Dynamical bifurcation theory is concerned with the changes that occur in the global structure of dynamical systems as parameters are varied. This book makes recent research in bifurcation theory of dynamical systems accessible to researchers interested in this subject. In particular, the relevant results obtained by Chinese mathematicians are introduced as well as some of the works of the authors which may not be widely known. The focus is on the analytic approach to the theory and methods of bifurcations. The book prepares graduate students for further study in this area, and it serves as a ready reference for researchers in nonlinear sciences and applied mathematics.




Perturbation Methods, Bifurcation Theory and Computer Algebra


Book Description

Perturbation methods have always been an important tool for treating nonlinear differential equations. Now the drudgery associated with them has been eliminated! This book offers computer algebra (MACSYMA) programs which implement the most popular perturbation methods. Not only does this avoid the errors associated with hand computation, but the increase in efficiency permits more complicated problems to be tackled. This book is useful both for the beginner learning perturbation methods for the first time, as well as for the researcher. Methods covered include: Lindstedt's method, center manifolds, normal forms, two variable expansion method (method of multiple scales), averaging, Lie transforms and Liapunov-Schmidt reduction. For each method the book includes an introduction and some example problems solved both by hand and by machine. The examples feature common bifurcations such as the pitchfork and the Hopf. The MACSYMA code for each method is given and suggested exercises are provided at the end of each Chapter. An Appendix offers a brief introduction to MACSYMA.




Lectures on Bifurcations, Dynamics and Symmetry


Book Description

This book is an expanded version of a Master Class on the symmetric bifurcation theory of differential equations given by the author at the University of Twente in 1995. The notes cover a wide range of recent results in the subject, and focus on the dynamics that can appear in the generic bifurcation theory of symmetric differential equations. This text covers a wide range of current results in the subject of bifurcations, dynamics and symmetry. The style and format of the original lectures has largely been maintained and the notes include over 70 exercises.




Multiparameter Bifurcation Theory


Book Description

This 1985 AMS Summer Research Conference brought together mathematicians interested in multiparameter bifurcation with scientists working on fluid instabilities and chemical reactor dynamics. This proceedings volume demonstrates the mutually beneficial interactions between the mathematical analysis, based on genericity, and experimental studies in these fields. Various papers study steady state bifurcation, Hopf bifurcation to periodic solutions, interactions between modes, dynamic bifurcations, and the role of symmetries in such systems. A section of abstracts at the end of the volume provides guides and pointers to the literature. The mathematical study of multiparameter bifurcation leads to a number of theoretical and practical difficulties, many of which are discussed in these papers. The articles also describe theoretical and experimental studies of chemical reactors, which provide many situations in which to test the mathematical ideas. Other test areas are found in fluid dynamics, particularly in studying the routes to chaos in two laboratory systems, Taylor-Couette flow between rotating cylinders and Rayleigh-Benard convection in a fluid layer.




Elements of Applied Bifurcation Theory


Book Description

Providing readers with a solid basis in dynamical systems theory, as well as explicit procedures for application of general mathematical results to particular problems, the focus here is on efficient numerical implementations of the developed techniques. The book is designed for advanced undergraduates or graduates in applied mathematics, as well as for Ph.D. students and researchers in physics, biology, engineering, and economics who use dynamical systems as model tools in their studies. A moderate mathematical background is assumed, and, whenever possible, only elementary mathematical tools are used. This new edition preserves the structure of the first while updating the context to incorporate recent theoretical developments, in particular new and improved numerical methods for bifurcation analysis.




Bifurcation Analysis


Book Description

Bifurcation theory has made a very fast upswing in the last fifteen years. Roughly speaking it generalises to dynamic systems the pos sibility of mUltiple solutions, a possibility already recognised in static systems - physical, chemical, social - when operating far from their equilibrium states. It so happened that quite a few staff members of the Erasmus University Rotterdam were thinking along those lines about certain aspects of their disciplines. To have a number of specialists and potential "fans" convene to discuss various aspects of bifurcation al thinking, seemed a natural development. The resulting papers were judged to be of interest to a larger public, and as such are logically regrouped in this volume, one in a series of studies resulting from the activities of the Steering Committee on Interdisciplinary Studies of the Erasmus University, Rotterdam. Although the volume is perhaps multidisciplinary rather than interdisciplinary - the interdisciplinary aspect being only "latent" -, as a "soft" interdisciplinary exercise (the application of formal structures of one discipline to another) it has a right to interdisciplinary existence! This book could not have been published without a generous grant of the University Foundation of the Erasmus University Rotterdam, which allowed the conference to be held and the resulting papers to be published; that generosity is gratefully acknowledged.