Big Data 2.0 Processing Systems


Book Description

This book provides readers the “big picture” and a comprehensive survey of the domain of big data processing systems. For the past decade, the Hadoop framework has dominated the world of big data processing, yet recently academia and industry have started to recognize its limitations in several application domains and big data processing scenarios such as the large-scale processing of structured data, graph data and streaming data. Thus, it is now gradually being replaced by a collection of engines that are dedicated to specific verticals (e.g. structured data, graph data, and streaming data). The book explores this new wave of systems, which it refers to as Big Data 2.0 processing systems. After Chapter 1 presents the general background of the big data phenomena, Chapter 2 provides an overview of various general-purpose big data processing systems that allow their users to develop various big data processing jobs for different application domains. In turn, Chapter 3 examines various systems that have been introduced to support the SQL flavor on top of the Hadoop infrastructure and provide competing and scalable performance in the processing of large-scale structured data. Chapter 4 discusses several systems that have been designed to tackle the problem of large-scale graph processing, while the main focus of Chapter 5 is on several systems that have been designed to provide scalable solutions for processing big data streams, and on other sets of systems that have been introduced to support the development of data pipelines between various types of big data processing jobs and systems. Lastly, Chapter 6 shares conclusions and an outlook on future research challenges. Overall, the book offers a valuable reference guide for students, researchers and professionals in the domain of big data processing systems. Further, its comprehensive content will hopefully encourage readers to pursue further research on the subject.




Computational Statistics in Data Science


Book Description

Ein unverzichtbarer Leitfaden bei der Anwendung computergestützter Statistik in der modernen Datenwissenschaft In Computational Statistics in Data Science präsentiert ein Team aus bekannten Mathematikern und Statistikern eine fundierte Zusammenstellung von Konzepten, Theorien, Techniken und Praktiken der computergestützten Statistik für ein Publikum, das auf der Suche nach einem einzigen, umfassenden Referenzwerk für Statistik in der modernen Datenwissenschaft ist. Das Buch enthält etliche Kapitel zu den wesentlichen konkreten Bereichen der computergestützten Statistik, in denen modernste Techniken zeitgemäß und verständlich dargestellt werden. Darüber hinaus bietet Computational Statistics in Data Science einen kostenlosen Zugang zu den fertigen Einträgen im Online-Nachschlagewerk Wiley StatsRef: Statistics Reference Online. Außerdem erhalten die Leserinnen und Leser: * Eine gründliche Einführung in die computergestützte Statistik mit relevanten und verständlichen Informationen für Anwender und Forscher in verschiedenen datenintensiven Bereichen * Umfassende Erläuterungen zu aktuellen Themen in der Statistik, darunter Big Data, Datenstromverarbeitung, quantitative Visualisierung und Deep Learning Das Werk eignet sich perfekt für Forscher und Wissenschaftler sämtlicher Fachbereiche, die Techniken der computergestützten Statistik auf einem gehobenen oder fortgeschrittenen Niveau anwenden müssen. Zudem gehört Computational Statistics in Data Science in das Bücherregal von Wissenschaftlern, die sich mit der Erforschung und Entwicklung von Techniken der computergestützten Statistik und statistischen Grafiken beschäftigen.




Large Scale and Big Data


Book Description

Large Scale and Big Data: Processing and Management provides readers with a central source of reference on the data management techniques currently available for large-scale data processing. Presenting chapters written by leading researchers, academics, and practitioners, it addresses the fundamental challenges associated with Big Data processing tools and techniques across a range of computing environments. The book begins by discussing the basic concepts and tools of large-scale Big Data processing and cloud computing. It also provides an overview of different programming models and cloud-based deployment models. The book’s second section examines the usage of advanced Big Data processing techniques in different domains, including semantic web, graph processing, and stream processing. The third section discusses advanced topics of Big Data processing such as consistency management, privacy, and security. Supplying a comprehensive summary from both the research and applied perspectives, the book covers recent research discoveries and applications, making it an ideal reference for a wide range of audiences, including researchers and academics working on databases, data mining, and web scale data processing. After reading this book, you will gain a fundamental understanding of how to use Big Data-processing tools and techniques effectively across application domains. Coverage includes cloud data management architectures, big data analytics visualization, data management, analytics for vast amounts of unstructured data, clustering, classification, link analysis of big data, scalable data mining, and machine learning techniques.




Big Data Application in Power Systems


Book Description

Big Data Application in Power Systems, Second Edition presents a thorough update of the previous volume, providing readers with step-by-step guidance in big data analytics utilization for power system diagnostics, operation, and control. Bringing back a team of global experts and drawing on fresh, emerging perspectives, this book provides cutting-edge advice for meeting today's challenges in this rapidly accelerating area of power engineering. Divided into three parts, this book begins by breaking down the big picture for electric utilities, before zooming in to examine theoretical problems and solutions in detail. Finally, the third section provides case studies and applications, demonstrating solution troubleshooting and design from a variety of perspectives and for a range of technologies. Readers will develop new strategies and techniques for leveraging data towards real-world outcomes. Including five brand new chapters on emerging technological solutions, Big Data Application in Power Systems, Second Edition remains an essential resource for the reader aiming to utilize the potential of big data in the power systems of the future. - Provides a total refresh to include the most up-to-date research, developments, and challenges - Focuses on practical techniques, including rapidly modernizing monitoring systems, measurement data availability, big data handling and machine learning approaches for processing high dimensional, heterogeneous, and spatiotemporal data - Engages with cross-disciplinary lessons, drawing on the impact of intersectional technology including statistics, computer science, and bioinformatics - Includes five brand new chapters on hot topics, ranging from uncertainty decision-making to features, selection methods, and the opportunities provided by social network data




Big Data


Book Description

Summary Big Data teaches you to build big data systems using an architecture that takes advantage of clustered hardware along with new tools designed specifically to capture and analyze web-scale data. It describes a scalable, easy-to-understand approach to big data systems that can be built and run by a small team. Following a realistic example, this book guides readers through the theory of big data systems, how to implement them in practice, and how to deploy and operate them once they're built. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Book Web-scale applications like social networks, real-time analytics, or e-commerce sites deal with a lot of data, whose volume and velocity exceed the limits of traditional database systems. These applications require architectures built around clusters of machines to store and process data of any size, or speed. Fortunately, scale and simplicity are not mutually exclusive. Big Data teaches you to build big data systems using an architecture designed specifically to capture and analyze web-scale data. This book presents the Lambda Architecture, a scalable, easy-to-understand approach that can be built and run by a small team. You'll explore the theory of big data systems and how to implement them in practice. In addition to discovering a general framework for processing big data, you'll learn specific technologies like Hadoop, Storm, and NoSQL databases. This book requires no previous exposure to large-scale data analysis or NoSQL tools. Familiarity with traditional databases is helpful. What's Inside Introduction to big data systems Real-time processing of web-scale data Tools like Hadoop, Cassandra, and Storm Extensions to traditional database skills About the Authors Nathan Marz is the creator of Apache Storm and the originator of the Lambda Architecture for big data systems. James Warren is an analytics architect with a background in machine learning and scientific computing. Table of Contents A new paradigm for Big Data PART 1 BATCH LAYER Data model for Big Data Data model for Big Data: Illustration Data storage on the batch layer Data storage on the batch layer: Illustration Batch layer Batch layer: Illustration An example batch layer: Architecture and algorithms An example batch layer: Implementation PART 2 SERVING LAYER Serving layer Serving layer: Illustration PART 3 SPEED LAYER Realtime views Realtime views: Illustration Queuing and stream processing Queuing and stream processing: Illustration Micro-batch stream processing Micro-batch stream processing: Illustration Lambda Architecture in depth




Intelligent Computing on IoT 2.0, Big Data Analytics, and Block Chain Technology


Book Description

The book is designed as a reference text and explores the concepts and techniques of IoT, artificial intelligence (AI), and blockchain. It also discusses the possibility of applying blockchain for providing security in various domains. The specific highlight of this book is focused on the application of integrated technologies in enhancing data models, better insights and discovery, intelligent predictions, smarter finance, smart retail, global verification, transparent governance, and innovative audit systems. The book discusses the potential of blockchain to significantly increase data while boosting accuracy and integrity in IoT-generated data and AI-processed information. It elucidates definitions, concepts, theories, and assumptions involved in smart contracts and distributed ledgers related to IoT systems and AI approaches. The book offers real-world uses of blockchain technologies in different IoT systems and further studies its influence in supply chains and logistics, the automotive industry, smart homes, the pharmaceutical industry, agriculture, and other areas. It also presents readers with ways of employing blockchain in IoT and AI, helping them to understand what they can and cannot do with blockchain. The book is aimed primarily at advanced undergraduates and graduates studying computer science, computer engineering, electrical engineering, information systems, computational sciences, artificial intelligence, and information technology. Researchers and professionals will also find this book very useful.




Environmental Software Systems. Computer Science for Environmental Protection


Book Description

This book constitutes the refereed proceedings of the 12th IFIP WG 5.11 International Symposium on Environmental Software Systems, ISESS 2017, held in Zadar, Croatia, in May 2017. The 35 revised full papers presented together with 4 keynote lectures were carefully reviewed and selected from 46 submissions. The papers deal with environmental challenges and try to provide solutions using forward-looking and leading-edge IT technology. They are organized in the following topical sections: air and climate; water and hydrosphere; health and biosphere; risk and disaster management; information systems; and modelling, visualization and decision support.




The Dictionary of Artificial Intelligence


Book Description

Unveiling the Future: Your Portal to Artificial Intelligence Proficiency In the epoch of digital metamorphosis, Artificial Intelligence (AI) stands as the vanguard of a new dawn, a nexus where human ingenuity intertwines with machine precision. As we delve deeper into this uncharted realm, the boundary between the conceivable and the fantastical continually blurs, heralding a new era of endless possibilities. The Dictionary of Artificial Intelligence, embracing a compendium of 3,300 meticulously curated titles, endeavors to be the torchbearer in this journey of discovery, offering a wellspring of knowledge to both the uninitiated and the adept. Embarking on the pages of this dictionary is akin to embarking on a voyage through the vast and often turbulent seas of AI. Each entry serves as a beacon, illuminating complex terminologies, core principles, and the avant-garde advancements that characterize this dynamic domain. The dictionary is more than a mere compilation of terms; it's a labyrinth of understanding waiting to be traversed. The Dictionary of Artificial Intelligence is an endeavor to demystify the arcane, to foster a shared lexicon that enhances collaboration, innovation, and comprehension across the AI community. It's a mission to bridge the chasm between ignorance and insight, to unravel the intricacies of AI that often seem enigmatic to the outsiders. This profound reference material transcends being a passive repository of terms; it’s an engagement with the multifaceted domain of artificial intelligence. Each title encapsulated within these pages is a testament to the audacity of human curiosity and the unyielding quest for advancement that propels the AI domain forward. The Dictionary of Artificial Intelligence is an invitation to delve deeper, to grapple with the lexicon of a field that stands at the cusp of redefining the very fabric of society. It's a conduit through which the curious become enlightened, the proficient become masters, and the innovators find inspiration. As you traverse through the entries of The Dictionary of Artificial Intelligence, you are embarking on a journey of discovery. A journey that not only augments your understanding but also ignites the spark of curiosity and the drive for innovation that are quintessential in navigating the realms of AI. We beckon you to commence this educational expedition, to explore the breadth and depth of AI lexicon, and to emerge with a boundless understanding and an unyielding resolve to contribute to the ever-evolving narrative of artificial intelligence. Through The Dictionary of Artificial Intelligence, may your quest for knowledge be as boundless and exhilarating as the domain it explores.




Energy Efficient Embedded Video Processing Systems


Book Description

This book provides its readers with the means to implement energy-efficient video systems, by using different optimization approaches at multiple abstraction levels. The authors evaluate the complete video system with a motive to optimize its different software and hardware components in synergy, increase the throughput-per-watt, and address reliability issues. Subsequently, this book provides algorithmic and architectural enhancements, best practices and deployment models for new video systems, while considering new implementation paradigms of hardware accelerators, parallelism for heterogeneous multi- and many-core systems, and systems with long life-cycles. Particular emphasis is given to the current video encoding industry standard H.264/AVC, and one of the latest video encoders (High Efficiency Video Coding, HEVC).