Big Data Security


Book Description

After a short description of the key concepts of big data the book explores on the secrecy and security threats posed especially by cloud based data storage. It delivers conceptual frameworks and models along with case studies of recent technology.




Big Data


Book Description

Although there are already some books published on Big Data, most of them only cover basic concepts and society impacts and ignore the internal implementation details-making them unsuitable to R&D people. To fill such a need, Big Data: Storage, Sharing, and Security examines Big Data management from an R&D perspective. It covers the 3S desi




Big Data Analytics in Cybersecurity


Book Description

Big data is presenting challenges to cybersecurity. For an example, the Internet of Things (IoT) will reportedly soon generate a staggering 400 zettabytes (ZB) of data a year. Self-driving cars are predicted to churn out 4000 GB of data per hour of driving. Big data analytics, as an emerging analytical technology, offers the capability to collect, store, process, and visualize these vast amounts of data. Big Data Analytics in Cybersecurity examines security challenges surrounding big data and provides actionable insights that can be used to improve the current practices of network operators and administrators. Applying big data analytics in cybersecurity is critical. By exploiting data from the networks and computers, analysts can discover useful network information from data. Decision makers can make more informative decisions by using this analysis, including what actions need to be performed, and improvement recommendations to policies, guidelines, procedures, tools, and other aspects of the network processes. Bringing together experts from academia, government laboratories, and industry, the book provides insight to both new and more experienced security professionals, as well as data analytics professionals who have varying levels of cybersecurity expertise. It covers a wide range of topics in cybersecurity, which include: Network forensics Threat analysis Vulnerability assessment Visualization Cyber training. In addition, emerging security domains such as the IoT, cloud computing, fog computing, mobile computing, and cyber-social networks are examined. The book first focuses on how big data analytics can be used in different aspects of cybersecurity including network forensics, root-cause analysis, and security training. Next it discusses big data challenges and solutions in such emerging cybersecurity domains as fog computing, IoT, and mobile app security. The book concludes by presenting the tools and datasets for future cybersecurity research.




Security, Privacy, and Forensics Issues in Big Data


Book Description

With the proliferation of devices connected to the internet and connected to each other, the volume of data collected, stored, and processed is increasing every day, which brings new challenges in terms of information security. As big data expands with the help of public clouds, traditional security solutions tailored to private computing infrastructures and confined to a well-defined security perimeter, such as firewalls and demilitarized zones (DMZs), are no longer effective. New security functions are required to work over the heterogenous composition of diverse hardware, operating systems, and network domains. Security, Privacy, and Forensics Issues in Big Data is an essential research book that examines recent advancements in big data and the impact that these advancements have on information security and privacy measures needed for these networks. Highlighting a range of topics including cryptography, data analytics, and threat detection, this is an excellent reference source for students, software developers and engineers, security analysts, IT consultants, academicians, researchers, and professionals.




Research Anthology on Privatizing and Securing Data


Book Description

With the immense amount of data that is now available online, security concerns have been an issue from the start, and have grown as new technologies are increasingly integrated in data collection, storage, and transmission. Online cyber threats, cyber terrorism, hacking, and other cybercrimes have begun to take advantage of this information that can be easily accessed if not properly handled. New privacy and security measures have been developed to address this cause for concern and have become an essential area of research within the past few years and into the foreseeable future. The ways in which data is secured and privatized should be discussed in terms of the technologies being used, the methods and models for security that have been developed, and the ways in which risks can be detected, analyzed, and mitigated. The Research Anthology on Privatizing and Securing Data reveals the latest tools and technologies for privatizing and securing data across different technologies and industries. It takes a deeper dive into both risk detection and mitigation, including an analysis of cybercrimes and cyber threats, along with a sharper focus on the technologies and methods being actively implemented and utilized to secure data online. Highlighted topics include information governance and privacy, cybersecurity, data protection, challenges in big data, security threats, and more. This book is essential for data analysts, cybersecurity professionals, data scientists, security analysts, IT specialists, practitioners, researchers, academicians, and students interested in the latest trends and technologies for privatizing and securing data.




Machine Intelligence and Big Data Analytics for Cybersecurity Applications


Book Description

This book presents the latest advances in machine intelligence and big data analytics to improve early warning of cyber-attacks, for cybersecurity intrusion detection and monitoring, and malware analysis. Cyber-attacks have posed real and wide-ranging threats for the information society. Detecting cyber-attacks becomes a challenge, not only because of the sophistication of attacks but also because of the large scale and complex nature of today’s IT infrastructures. It discusses novel trends and achievements in machine intelligence and their role in the development of secure systems and identifies open and future research issues related to the application of machine intelligence in the cybersecurity field. Bridging an important gap between machine intelligence, big data, and cybersecurity communities, it aspires to provide a relevant reference for students, researchers, engineers, and professionals working in this area or those interested in grasping its diverse facets and exploring the latest advances on machine intelligence and big data analytics for cybersecurity applications.




Privacy and Security Policies in Big Data


Book Description

In recent years, technological advances have led to significant developments within a variety of business applications. In particular, data-driven research provides ample opportunity for enterprise growth, if utilized efficiently. Privacy and Security Policies in Big Data is a pivotal reference source for the latest research on innovative concepts on the management of security and privacy analytics within big data. Featuring extensive coverage on relevant areas such as kinetic knowledge, cognitive analytics, and parallel computing, this publication is an ideal resource for professionals, researchers, academicians, advanced-level students, and technology developers in the field of big data.




Privacy and Security Issues in Big Data


Book Description

This book focuses on privacy and security concerns in big data and differentiates between privacy and security and privacy requirements in big data. It focuses on the results obtained after applying a systematic mapping study and implementation of security in the big data for utilizing in business under the establishment of “Business Intelligence”. The chapters start with the definition of big data, discussions why security is used in business infrastructure and how the security can be improved. In this book, some of the data security and data protection techniques are focused and it presents the challenges and suggestions to meet the requirements of computing, communication and storage capabilities for data mining and analytics applications with large aggregate data in business.




Handbook of Big Data and IoT Security


Book Description

This handbook provides an overarching view of cyber security and digital forensic challenges related to big data and IoT environment, prior to reviewing existing data mining solutions and their potential application in big data context, and existing authentication and access control for IoT devices. An IoT access control scheme and an IoT forensic framework is also presented in this book, and it explains how the IoT forensic framework can be used to guide investigation of a popular cloud storage service. A distributed file system forensic approach is also presented, which is used to guide the investigation of Ceph. Minecraft, a Massively Multiplayer Online Game, and the Hadoop distributed file system environment are also forensically studied and their findings reported in this book. A forensic IoT source camera identification algorithm is introduced, which uses the camera's sensor pattern noise from the captured image. In addition to the IoT access control and forensic frameworks, this handbook covers a cyber defense triage process for nine advanced persistent threat (APT) groups targeting IoT infrastructure, namely: APT1, Molerats, Silent Chollima, Shell Crew, NetTraveler, ProjectSauron, CopyKittens, Volatile Cedar and Transparent Tribe. The characteristics of remote-controlled real-world Trojans using the Cyber Kill Chain are also examined. It introduces a method to leverage different crashes discovered from two fuzzing approaches, which can be used to enhance the effectiveness of fuzzers. Cloud computing is also often associated with IoT and big data (e.g., cloud-enabled IoT systems), and hence a survey of the cloud security literature and a survey of botnet detection approaches are presented in the book. Finally, game security solutions are studied and explained how one may circumvent such solutions. This handbook targets the security, privacy and forensics research community, and big data research community, including policy makers and government agencies, public and private organizations policy makers. Undergraduate and postgraduate students enrolled in cyber security and forensic programs will also find this handbook useful as a reference.




Handbook of Big Data Privacy


Book Description

This handbook provides comprehensive knowledge and includes an overview of the current state-of-the-art of Big Data Privacy, with chapters written by international world leaders from academia and industry working in this field. The first part of this book offers a review of security challenges in critical infrastructure and offers methods that utilize acritical intelligence (AI) techniques to overcome those issues. It then focuses on big data security and privacy issues in relation to developments in the Industry 4.0. Internet of Things (IoT) devices are becoming a major source of security and privacy concern in big data platforms. Multiple solutions that leverage machine learning for addressing security and privacy issues in IoT environments are also discussed this handbook. The second part of this handbook is focused on privacy and security issues in different layers of big data systems. It discusses about methods for evaluating security and privacy of big data systems on network, application and physical layers. This handbook elaborates on existing methods to use data analytic and AI techniques at different layers of big data platforms to identify privacy and security attacks. The final part of this handbook is focused on analyzing cyber threats applicable to the big data environments. It offers an in-depth review of attacks applicable to big data platforms in smart grids, smart farming, FinTech, and health sectors. Multiple solutions are presented to detect, prevent and analyze cyber-attacks and assess the impact of malicious payloads to those environments. This handbook provides information for security and privacy experts in most areas of big data including; FinTech, Industry 4.0, Internet of Things, Smart Grids, Smart Farming and more. Experts working in big data, privacy, security, forensics, malware analysis, machine learning and data analysts will find this handbook useful as a reference. Researchers and advanced-level computer science students focused on computer systems, Internet of Things, Smart Grid, Smart Farming, Industry 4.0 and network analysts will also find this handbook useful as a reference.