Big Data Concepts, Theories, and Applications


Book Description

This book covers three major parts of Big Data: concepts, theories and applications. Written by world-renowned leaders in Big Data, this book explores the problems, possible solutions and directions for Big Data in research and practice. It also focuses on high level concepts such as definitions of Big Data from different angles; surveys in research and applications; and existing tools, mechanisms, and systems in practice. Each chapter is independent from the other chapters, allowing users to read any chapter directly. After examining the practical side of Big Data, this book presents theoretical perspectives. The theoretical research ranges from Big Data representation, modeling and topology to distribution and dimension reducing. Chapters also investigate the many disciplines that involve Big Data, such as statistics, data mining, machine learning, networking, algorithms, security and differential geometry. The last section of this book introduces Big Data applications from different communities, such as business, engineering and science. Big Data Concepts, Theories and Applications is designed as a reference for researchers and advanced level students in computer science, electrical engineering and mathematics. Practitioners who focus on information systems, big data, data mining, business analysis and other related fields will also find this material valuable.




Big Data


Book Description

Learn Big Data from the ground up with this complete and up-to-date resource from leaders in the field Big Data: Concepts, Technology, and Architecture delivers a comprehensive treatment of Big Data tools, terminology, and technology perfectly suited to a wide range of business professionals, academic researchers, and students. Beginning with a fulsome overview of what we mean when we say, “Big Data,” the book moves on to discuss every stage of the lifecycle of Big Data. You’ll learn about the creation of structured, unstructured, and semi-structured data, data storage solutions, traditional database solutions like SQL, data processing, data analytics, machine learning, and data mining. You’ll also discover how specific technologies like Apache Hadoop, SQOOP, and Flume work. Big Data also covers the central topic of big data visualization with Tableau, and you’ll learn how to create scatter plots, histograms, bar, line, and pie charts with that software. Accessibly organized, Big Data includes illuminating case studies throughout the material, showing you how the included concepts have been applied in real-world settings. Some of those concepts include: The common challenges facing big data technology and technologists, like data heterogeneity and incompleteness, data volume and velocity, storage limitations, and privacy concerns Relational and non-relational databases, like RDBMS, NoSQL, and NewSQL databases Virtualizing Big Data through encapsulation, partitioning, and isolating, as well as big data server virtualization Apache software, including Hadoop, Cassandra, Avro, Pig, Mahout, Oozie, and Hive The Big Data analytics lifecycle, including business case evaluation, data preparation, extraction, transformation, analysis, and visualization Perfect for data scientists, data engineers, and database managers, Big Data also belongs on the bookshelves of business intelligence analysts who are required to make decisions based on large volumes of information. Executives and managers who lead teams responsible for keeping or understanding large datasets will also benefit from this book.




Ethics of Big Data


Book Description

What are your organization’s policies for generating and using huge datasets full of personal information? This book examines ethical questions raised by the big data phenomenon, and explains why enterprises need to reconsider business decisions concerning privacy and identity. Authors Kord Davis and Doug Patterson provide methods and techniques to help your business engage in a transparent and productive ethical inquiry into your current data practices. Both individuals and organizations have legitimate interests in understanding how data is handled. Your use of data can directly affect brand quality and revenue—as Target, Apple, Netflix, and dozens of other companies have discovered. With this book, you’ll learn how to align your actions with explicit company values and preserve the trust of customers, partners, and stakeholders. Review your data-handling practices and examine whether they reflect core organizational values Express coherent and consistent positions on your organization’s use of big data Define tactical plans to close gaps between values and practices—and discover how to maintain alignment as conditions change over time Maintain a balance between the benefits of innovation and the risks of unintended consequences




Big Data: Concepts, Methodologies, Tools, and Applications


Book Description

The digital age has presented an exponential growth in the amount of data available to individuals looking to draw conclusions based on given or collected information across industries. Challenges associated with the analysis, security, sharing, storage, and visualization of large and complex data sets continue to plague data scientists and analysts alike as traditional data processing applications struggle to adequately manage big data. Big Data: Concepts, Methodologies, Tools, and Applications is a multi-volume compendium of research-based perspectives and solutions within the realm of large-scale and complex data sets. Taking a multidisciplinary approach, this publication presents exhaustive coverage of crucial topics in the field of big data including diverse applications, storage solutions, analysis techniques, and methods for searching and transferring large data sets, in addition to security issues. Emphasizing essential research in the field of data science, this publication is an ideal reference source for data analysts, IT professionals, researchers, and academics.




Research Anthology on Big Data Analytics, Architectures, and Applications


Book Description

Society is now completely driven by data with many industries relying on data to conduct business or basic functions within the organization. With the efficiencies that big data bring to all institutions, data is continuously being collected and analyzed. However, data sets may be too complex for traditional data-processing, and therefore, different strategies must evolve to solve the issue. The field of big data works as a valuable tool for many different industries. The Research Anthology on Big Data Analytics, Architectures, and Applications is a complete reference source on big data analytics that offers the latest, innovative architectures and frameworks and explores a variety of applications within various industries. Offering an international perspective, the applications discussed within this anthology feature global representation. Covering topics such as advertising curricula, driven supply chain, and smart cities, this research anthology is ideal for data scientists, data analysts, computer engineers, software engineers, technologists, government officials, managers, CEOs, professors, graduate students, researchers, and academicians.




Intelligent Systems Design and Applications


Book Description

This book highlights recent research on intelligent systems and nature-inspired computing. It presents 130 selected papers from the 19th International Conference on Intelligent Systems Design and Applications (ISDA 2020), which was held online. The ISDA is a premier conference in the field of computational intelligence, and the latest installment brought together researchers, engineers and practitioners whose work involves intelligent systems and their applications in industry. Including contributions by authors from 40 countries, the book offers a valuable reference guide for all researchers, students and practitioners in the fields of Computer Science and Engineering.




Agents and Multi-agent Systems: Technologies and Applications 2023


Book Description

This book highlights new trends and challenges in research on agents and the new digital and knowledge economy. It includes papers on business process management, agent-based modeling and simulation and anthropic-oriented computing that were originally presented at the 17th International KES Conference on Agents and Multi-Agent Systems: Technologies and Applications (KES-AMSTA 2023), held in Rome, Italy, in June 14–16, 2023. The respective papers cover topics such as software agents, multi-agent systems, agent modeling, mobile and cloud computing, big data analysis, business intelligence, artificial intelligence, social systems, computer embedded systems and nature-inspired manufacturing, all of which contribute to the modern digital economy.




Applications of Security, Mobile, Analytic, and Cloud (SMAC) Technologies for Effective Information Processing and Management


Book Description

From cloud computing to big data to mobile technologies, there is a vast supply of information being mined and collected. With an abundant amount of information being accessed, stored, and saved, basic controls are needed to protect and prevent security incidents as well as ensure business continuity. Applications of Security, Mobile, Analytic, and Cloud (SMAC) Technologies for Effective Information Processing and Management is a vital resource that discusses various research findings and innovations in the areas of big data analytics, mobile communication and mobile applications, distributed systems, and information security. With a focus on big data, the internet of things (IoT), mobile technologies, cloud computing, and information security, this book proves a vital resource for computer engineers, IT specialists, software developers, researchers, and graduate-level students seeking current research on SMAC technologies and information security management systems.




Networking Communication and Data Knowledge Engineering


Book Description

Data science, data engineering and knowledge engineering requires networking and communication as a backbone and have wide scope of implementation in engineering sciences. Keeping this ideology in preference, this book includes the insights that reflect the advances in these fields from upcoming researchers and leading academicians across the globe. It contains high-quality peer-reviewed papers of ‘International Conference on Recent Advancement in Computer, Communication and Computational Sciences (ICRACCCS 2016)’, held at Janardan Rai Nagar Rajasthan Vidyapeeth University, Udaipur, India, during 25–26 November 2016. The volume covers variety of topics such as Advanced Communication Networks, Artificial Intelligence and Evolutionary Algorithms, Advanced Software Engineering and Cloud Computing, Image Processing and Computer Vision, and Security. The book will help the perspective readers from computer industry and academia to derive the advances of next generation communication and computational technology and shape them into real life applications.




Management in the Era of Big Data


Book Description

This book is a wonderful collection of chapters that posits how managers need to cope in the Big Data era. It highlights many of the emerging developments in technologies, applications, and trends related to management’s needs in this Big Data era. —Dr. Jay Liebowitz, Harrisburg University of Science and Technology This book presents some meaningful work on Big Data analytics and its applications. Each chapter generates helpful guidance to the readers on Big Data analytics and its applications, challenges, and prospects that is necessary for organizational strategic direction. —Dr. Alex Koohang, Middle Georgia State University Big Data is a concept that has caught the attention of practitioners, academicians, and researchers. Big Data offers organizations the possibility of gaining a competitive advantage by managing, collecting, and analyzing massive amounts of data. As the promises and challenges posed by Big Data have increased over the past decade, significant issues have developed regarding how data can be used for improving management. Big Data can be understood as large amounts of data generated by the Internet and a variety of connected smart devices and sensors. This book discusses the main challenges posed by Big Data in a manner relevant to both practitioners and scholars. It examines how companies can leverage Big Data analytics to act and optimize the business. This book brings together the theory and practice of management in the era of Big Data. It offers a look at the current state of Big Data, including a comprehensive overview of both research and practical applications. By bringing together conceptual thinking and empirical research on the nature, meaning, and development of Big Data in management, this book unifies research on Big Data in management to stimulate new directions for academic investigation as well as practice.