Big Data in Multimodal Medical Imaging


Book Description

There is an urgent need to develop and integrate new statistical, mathematical, visualization, and computational models with the ability to analyze Big Data in order to retrieve useful information to aid clinicians in accurately diagnosing and treating patients. The main focus of this book is to review and summarize state-of-the-art big data and deep learning approaches to analyze and integrate multiple data types for the creation of a decision matrix to aid clinicians in the early diagnosis and identification of high risk patients for human diseases and disorders. Leading researchers will contribute original research book chapters analyzing efforts to solve these important problems.




Big Data in Medical Image Processing


Book Description

The field of medical imaging seen rapid development over the last two decades and has consequently revolutionized the way in which modern medicine is practiced. Diseases and their symptoms are constantly changing therefore continuous updating is necessary for the data to be relevant. Diseases fall into different categories, even a small difference in symptoms may result in categorising it in a different group altogether. Thus analysing data accurately is of critical importance. This book concentrates on diagnosing diseases like cancer or tumor from different modalities of images. This book is divided into the following domains: Importance of big data in medical imaging, pre-processing, image registration, feature extraction, classification and retrieval. It is further supplemented by the medical analyst for a continuous treatment process. The book provides an automated system that could retrieve images based on user’s interest to a point of providing decision support. It will help medical analysts to take informed decisions before planning treatment and surgery. It will also be useful to researchers who are working in problems involved in medical imaging.




Applications of Parallel Data Processing for Biomedical Imaging


Book Description

Despite the remarkable progress witnessed in the last decade in big data utilization and parallel processing techniques, a persistent disparity exists between the capabilities of computer-aided diagnosis systems and the intricacies of practical healthcare scenarios. This disconnection is particularly evident in the complex landscape of artificial intelligence (AI) and IoT innovations within the biomedical realm. The need to bridge this gap and explore the untapped potential in healthcare and biomedical applications has never been more crucial. As we navigate through these challenges, Applications of Parallel Data Processing for Biomedical Imaging offers insights and solutions to reshape the future of biomedical research. The objective of Applications of Parallel Data Processing for Biomedical Imaging is to bring together researchers from both the computer science and biomedical research communities. By showcasing state-of-the-art deep learning and large data analysis technologies, the book provides a platform for the cross-pollination of ideas between AI-based and traditional methodologies. The collaborative effort seeks to have a substantial impact on data mining, AI, computer vision, biomedical research, healthcare engineering, and other related fields. This interdisciplinary approach positions the book as a cornerstone for scholars, professors, and professionals working in software and medical fields, catering to both graduate and undergraduate students eager to explore the evolving landscape of parallel computing, artificial intelligence, and their applications in biomedical research.




Deep Neural Networks for Multimodal Imaging and Biomedical Applications


Book Description

The field of healthcare is seeing a rapid expansion of technological advancement within current medical practices. The implementation of technologies including neural networks, multi-model imaging, genetic algorithms, and soft computing are assisting in predicting and identifying diseases, diagnosing cancer, and the examination of cells. Implementing these biomedical technologies remains a challenge for hospitals worldwide, creating a need for research on the specific applications of these computational techniques. Deep Neural Networks for Multimodal Imaging and Biomedical Applications provides research exploring the theoretical and practical aspects of emerging data computing methods and imaging techniques within healthcare and biomedicine. The publication provides a complete set of information in a single module starting from developing deep neural networks to predicting disease by employing multi-modal imaging. Featuring coverage on a broad range of topics such as prediction models, edge computing, and quantitative measurements, this book is ideally designed for researchers, academicians, physicians, IT consultants, medical software developers, practitioners, policymakers, scholars, and students seeking current research on biomedical advancements and developing computational methods in healthcare.




Machine Learning and Medical Imaging


Book Description

Machine Learning and Medical Imaging presents state-of- the-art machine learning methods in medical image analysis. It first summarizes cutting-edge machine learning algorithms in medical imaging, including not only classical probabilistic modeling and learning methods, but also recent breakthroughs in deep learning, sparse representation/coding, and big data hashing. In the second part leading research groups around the world present a wide spectrum of machine learning methods with application to different medical imaging modalities, clinical domains, and organs. The biomedical imaging modalities include ultrasound, magnetic resonance imaging (MRI), computed tomography (CT), histology, and microscopy images. The targeted organs span the lung, liver, brain, and prostate, while there is also a treatment of examining genetic associations. Machine Learning and Medical Imaging is an ideal reference for medical imaging researchers, industry scientists and engineers, advanced undergraduate and graduate students, and clinicians. Demonstrates the application of cutting-edge machine learning techniques to medical imaging problems Covers an array of medical imaging applications including computer assisted diagnosis, image guided radiation therapy, landmark detection, imaging genomics, and brain connectomics Features self-contained chapters with a thorough literature review Assesses the development of future machine learning techniques and the further application of existing techniques




Medical Imaging


Book Description

Title Page -- Contents -- Some Requirements for and Experience with Covira algorithms for Registration and Segmentation -- Multi-modality image registration within COVIRA -- Using geometrical features to match CT and MR brain images -- Anatomical Surfaces Based 3D/3D and 3D/2D Registration for Computer Assisted Medical Interventions -- Segmentation and Fusion of Multimodality and Multi-Subjects Data for the Preparation of Neurosurgical Procedures -- 3D MULTIMODAL IMAGING IN IMAGE GUIDED INTERVENTIONS -- Interactive Image Segmentation in COVIRA -- Interactive Segmentation for Target Outline -- Medical Image Segmentation Using Active Shape Models -- Probabilistic hyperstack segmentation of MR brain data -- Towards Automatic Segmentation of Two-Dimensional Brain Tomograms -- Blood Vessel and Feature Extraction Based on Direction Fields -- Structural description and combined 3-D display for superior analysis of cerebral vascularity from MRA -- Author Index -- Glossary -- Colour Supplement




Medical Imaging Informatics


Book Description

Medical Imaging Informatics is an edited book that discusses how medical images can be processed using machine learning techniques and big data analysis methods. These tools help physicians to gain a full overview of a patient's data, which in turn assists with diagnosis, prognosis or intervention.




Ethical and Philosophical Issues in Medical Imaging, Multimodal Learning and Fusion Across Scales for Clinical Decision Support, and Topological Data Analysis for Biomedical Imaging


Book Description

This book constitutes the refereed joint proceedings of the 1st International Workshop on Ethical & Philosophical Issues in Medical Imaging (EPIMI 2022); the 12th International Workshop on Multimodal Learning and Fusion Across Scales for Clinical Decision Support (ML-CDS 2022) and the 2nd International Workshop on Topological Data Analysis for Biomedical Imaging (TDA4BiomedicalImaging 2022), held in conjunction with the 25th International Conference on Medical Imaging and Computer-Assisted Intervention, MICCAI 2022, in Singapore, in September 2022. EPIMI includes five short papers about various humanistic aspects of medical image computing and computer-assisted interventions. The ML-CDS papers discuss machine learning on multimodal data sets for clinical decision support and treatment planning. The TDA papers focus on Topological Data Analysis: a collection of techniques and tools that have matured from an increasing interest in the role topology plays in machine learning and data science.




Big Data Analytics for Large-Scale Multimedia Search


Book Description

A timely overview of cutting edge technologies for multimedia retrieval with a special emphasis on scalability The amount of multimedia data available every day is enormous and is growing at an exponential rate, creating a great need for new and more efficient approaches for large scale multimedia search. This book addresses that need, covering the area of multimedia retrieval and placing a special emphasis on scalability. It reports the recent works in large scale multimedia search, including research methods and applications, and is structured so that readers with basic knowledge can grasp the core message while still allowing experts and specialists to drill further down into the analytical sections. Big Data Analytics for Large-Scale Multimedia Search covers: representation learning, concept and event-based video search in large collections; big data multimedia mining, large scale video understanding, big multimedia data fusion, large-scale social multimedia analysis, privacy and audiovisual content, data storage and management for big multimedia, large scale multimedia search, multimedia tagging using deep learning, interactive interfaces for big multimedia and medical decision support applications using large multimodal data. Addresses the area of multimedia retrieval and pays close attention to the issue of scalability Presents problem driven techniques with solutions that are demonstrated through realistic case studies and user scenarios Includes tables, illustrations, and figures Offers a Wiley-hosted BCS that features links to open source algorithms, data sets and tools Big Data Analytics for Large-Scale Multimedia Search is an excellent book for academics, industrial researchers, and developers interested in big multimedia data search retrieval. It will also appeal to consultants in computer science problems and professionals in the multimedia industry.




Cloud Computing in Medical Imaging


Book Description

Today’s healthcare organizations must focus on a lot more than just the health of their clients. The infrastructure it takes to support clinical-care delivery continues to expand, with information technology being one of the most significant contributors to that growth. As companies have become more dependent on technology for their clinical, administrative, and financial functions, their IT departments and expenditures have had to scale quickly to keep up. However, as technology demands have increased, so have the options for reliable infrastructure for IT applications and data storage. The one that has taken center stage over the past few years is cloud computing. Healthcare researchers are moving their efforts to the cloud because they need adequate resources to process, store, exchange, and use large quantities of medical data. Cloud Computing in Medical Imaging covers the state-of-the-art techniques for cloud computing in medical imaging, healthcare technologies, and services. The book focuses on Machine-learning algorithms for health data security Fog computing in IoT-based health care Medical imaging and healthcare applications using fog IoT networks Diagnostic imaging and associated services Image steganography for medical informatics This book aims to help advance scientific research within the broad field of cloud computing in medical imaging, healthcare technologies, and services. It focuses on major trends and challenges in this area and presents work aimed to identify new techniques and their use in biomedical analysis.