Big Data Security


Book Description

After a short description of the key concepts of big data the book explores on the secrecy and security threats posed especially by cloud based data storage. It delivers conceptual frameworks and models along with case studies of recent technology.




Big Data


Book Description

Although there are already some books published on Big Data, most of them only cover basic concepts and society impacts and ignore the internal implementation details-making them unsuitable to R&D people. To fill such a need, Big Data: Storage, Sharing, and Security examines Big Data management from an R&D perspective. It covers the 3S desi




Security, Privacy, and Forensics Issues in Big Data


Book Description

With the proliferation of devices connected to the internet and connected to each other, the volume of data collected, stored, and processed is increasing every day, which brings new challenges in terms of information security. As big data expands with the help of public clouds, traditional security solutions tailored to private computing infrastructures and confined to a well-defined security perimeter, such as firewalls and demilitarized zones (DMZs), are no longer effective. New security functions are required to work over the heterogenous composition of diverse hardware, operating systems, and network domains. Security, Privacy, and Forensics Issues in Big Data is an essential research book that examines recent advancements in big data and the impact that these advancements have on information security and privacy measures needed for these networks. Highlighting a range of topics including cryptography, data analytics, and threat detection, this is an excellent reference source for students, software developers and engineers, security analysts, IT consultants, academicians, researchers, and professionals.




Research Anthology on Privatizing and Securing Data


Book Description

With the immense amount of data that is now available online, security concerns have been an issue from the start, and have grown as new technologies are increasingly integrated in data collection, storage, and transmission. Online cyber threats, cyber terrorism, hacking, and other cybercrimes have begun to take advantage of this information that can be easily accessed if not properly handled. New privacy and security measures have been developed to address this cause for concern and have become an essential area of research within the past few years and into the foreseeable future. The ways in which data is secured and privatized should be discussed in terms of the technologies being used, the methods and models for security that have been developed, and the ways in which risks can be detected, analyzed, and mitigated. The Research Anthology on Privatizing and Securing Data reveals the latest tools and technologies for privatizing and securing data across different technologies and industries. It takes a deeper dive into both risk detection and mitigation, including an analysis of cybercrimes and cyber threats, along with a sharper focus on the technologies and methods being actively implemented and utilized to secure data online. Highlighted topics include information governance and privacy, cybersecurity, data protection, challenges in big data, security threats, and more. This book is essential for data analysts, cybersecurity professionals, data scientists, security analysts, IT specialists, practitioners, researchers, academicians, and students interested in the latest trends and technologies for privatizing and securing data.




Privacy and Security Policies in Big Data


Book Description

In recent years, technological advances have led to significant developments within a variety of business applications. In particular, data-driven research provides ample opportunity for enterprise growth, if utilized efficiently. Privacy and Security Policies in Big Data is a pivotal reference source for the latest research on innovative concepts on the management of security and privacy analytics within big data. Featuring extensive coverage on relevant areas such as kinetic knowledge, cognitive analytics, and parallel computing, this publication is an ideal resource for professionals, researchers, academicians, advanced-level students, and technology developers in the field of big data.




Big Data Analytics in Cybersecurity


Book Description

Big data is presenting challenges to cybersecurity. For an example, the Internet of Things (IoT) will reportedly soon generate a staggering 400 zettabytes (ZB) of data a year. Self-driving cars are predicted to churn out 4000 GB of data per hour of driving. Big data analytics, as an emerging analytical technology, offers the capability to collect, store, process, and visualize these vast amounts of data. Big Data Analytics in Cybersecurity examines security challenges surrounding big data and provides actionable insights that can be used to improve the current practices of network operators and administrators. Applying big data analytics in cybersecurity is critical. By exploiting data from the networks and computers, analysts can discover useful network information from data. Decision makers can make more informative decisions by using this analysis, including what actions need to be performed, and improvement recommendations to policies, guidelines, procedures, tools, and other aspects of the network processes. Bringing together experts from academia, government laboratories, and industry, the book provides insight to both new and more experienced security professionals, as well as data analytics professionals who have varying levels of cybersecurity expertise. It covers a wide range of topics in cybersecurity, which include: Network forensics Threat analysis Vulnerability assessment Visualization Cyber training. In addition, emerging security domains such as the IoT, cloud computing, fog computing, mobile computing, and cyber-social networks are examined. The book first focuses on how big data analytics can be used in different aspects of cybersecurity including network forensics, root-cause analysis, and security training. Next it discusses big data challenges and solutions in such emerging cybersecurity domains as fog computing, IoT, and mobile app security. The book concludes by presenting the tools and datasets for future cybersecurity research.




Privacy and Security Issues in Big Data


Book Description

This book focuses on privacy and security concerns in big data and differentiates between privacy and security and privacy requirements in big data. It focuses on the results obtained after applying a systematic mapping study and implementation of security in the big data for utilizing in business under the establishment of “Business Intelligence”. The chapters start with the definition of big data, discussions why security is used in business infrastructure and how the security can be improved. In this book, some of the data security and data protection techniques are focused and it presents the challenges and suggestions to meet the requirements of computing, communication and storage capabilities for data mining and analytics applications with large aggregate data in business.




Handbook of Big Data and IoT Security


Book Description

This handbook provides an overarching view of cyber security and digital forensic challenges related to big data and IoT environment, prior to reviewing existing data mining solutions and their potential application in big data context, and existing authentication and access control for IoT devices. An IoT access control scheme and an IoT forensic framework is also presented in this book, and it explains how the IoT forensic framework can be used to guide investigation of a popular cloud storage service. A distributed file system forensic approach is also presented, which is used to guide the investigation of Ceph. Minecraft, a Massively Multiplayer Online Game, and the Hadoop distributed file system environment are also forensically studied and their findings reported in this book. A forensic IoT source camera identification algorithm is introduced, which uses the camera's sensor pattern noise from the captured image. In addition to the IoT access control and forensic frameworks, this handbook covers a cyber defense triage process for nine advanced persistent threat (APT) groups targeting IoT infrastructure, namely: APT1, Molerats, Silent Chollima, Shell Crew, NetTraveler, ProjectSauron, CopyKittens, Volatile Cedar and Transparent Tribe. The characteristics of remote-controlled real-world Trojans using the Cyber Kill Chain are also examined. It introduces a method to leverage different crashes discovered from two fuzzing approaches, which can be used to enhance the effectiveness of fuzzers. Cloud computing is also often associated with IoT and big data (e.g., cloud-enabled IoT systems), and hence a survey of the cloud security literature and a survey of botnet detection approaches are presented in the book. Finally, game security solutions are studied and explained how one may circumvent such solutions. This handbook targets the security, privacy and forensics research community, and big data research community, including policy makers and government agencies, public and private organizations policy makers. Undergraduate and postgraduate students enrolled in cyber security and forensic programs will also find this handbook useful as a reference.




Advanced Methodologies and Technologies in Network Architecture, Mobile Computing, and Data Analytics


Book Description

From cloud computing to data analytics, society stores vast supplies of information through wireless networks and mobile computing. As organizations are becoming increasingly more wireless, ensuring the security and seamless function of electronic gadgets while creating a strong network is imperative. Advanced Methodologies and Technologies in Network Architecture, Mobile Computing, and Data Analytics highlights the challenges associated with creating a strong network architecture in a perpetually online society. Readers will learn various methods in building a seamless mobile computing option and the most effective means of analyzing big data. This book is an important resource for information technology professionals, software developers, data analysts, graduate-level students, researchers, computer engineers, and IT specialists seeking modern information on emerging methods in data mining, information technology, and wireless networks.




Application of Big Data for National Security


Book Description

Application of Big Data for National Security provides users with state-of-the-art concepts, methods, and technologies for Big Data analytics in the fight against terrorism and crime, including a wide range of case studies and application scenarios. This book combines expertise from an international team of experts in law enforcement, national security, and law, as well as computer sciences, criminology, linguistics, and psychology, creating a unique cross-disciplinary collection of knowledge and insights into this increasingly global issue. The strategic frameworks and critical factors presented in Application of Big Data for National Security consider technical, legal, ethical, and societal impacts, but also practical considerations of Big Data system design and deployment, illustrating how data and security concerns intersect. In identifying current and future technical and operational challenges it supports law enforcement and government agencies in their operational, tactical and strategic decisions when employing Big Data for national security - Contextualizes the Big Data concept and how it relates to national security and crime detection and prevention - Presents strategic approaches for the design, adoption, and deployment of Big Data technologies in preventing terrorism and reducing crime - Includes a series of case studies and scenarios to demonstrate the application of Big Data in a national security context - Indicates future directions for Big Data as an enabler of advanced crime prevention and detection