Big Mechanisms in Systems Biology


Book Description

Big Mechanisms in Systems Biology: Big Data Mining, Network Modeling, and Genome-Wide Data Identification explains big mechanisms of systems biology by system identification and big data mining methods using models of biological systems. Systems biology is currently undergoing revolutionary changes in response to the integration of powerful technologies. Faced with a large volume of available literature, complicated mechanisms, small prior knowledge, few classes on the topics, and causal and mechanistic language, this is an ideal resource. This book addresses system immunity, regulation, infection, aging, evolution, and carcinogenesis, which are complicated biological systems with inconsistent findings in existing resources. These inconsistencies may reflect the underlying biology time-varying systems and signal transduction events that are often context-dependent, which raises a significant problem for mechanistic modeling since it is not clear which genes/proteins to include in models or experimental measurements. The book is a valuable resource for bioinformaticians and members of several areas of the biomedical field who are interested in an in-depth understanding on how to process and apply great amounts of biological data to improve research. - Written in a didactic manner in order to explain how to investigate Big Mechanisms by big data mining and system identification - Provides more than 140 diagrams to illustrate Big Mechanism in systems biology - Presents worked examples in each chapter




Molecular Mechanisms of Autonomy in Biological Systems


Book Description

This book presents a novel molecular description for understanding the regulatory mechanisms behind the autonomy and self-organization in biological systems. Chapters focus on defining and explaining the regulatory molecular mechanisms behind different aspects of autonomy and self-organization in the sense of autonomous coding, data processing, structure (mass) formation and energy production in a biological system. Subsequent chapters discuss the cross-talk among mechanisms of energy, and mass and information, transformation in biological systems. Other chapters focus on applications regarding therapeutic approaches in regenerative medicine. Molecular Mechanisms of Autonomy in Biological Systems is an indispensable resource for scientists and researchers in regenerative medicine, stem cell biology, molecular biology, tissue engineering, developmental biology, biochemistry, biophysics, bioinformatics, as well as big data sciences, complexity and soft computing.




Computational Systems Biology


Book Description

This comprehensively revised second edition of Computational Systems Biology discusses the experimental and theoretical foundations of the function of biological systems at the molecular, cellular or organismal level over temporal and spatial scales, as systems biology advances to provide clinical solutions to complex medical problems. In particular the work focuses on the engineering of biological systems and network modeling. - Logical information flow aids understanding of basic building blocks of life through disease phenotypes - Evolved principles gives insight into underlying organizational principles of biological organizations, and systems processes, governing functions such as adaptation or response patterns - Coverage of technical tools and systems helps researchers to understand and resolve specific systems biology problems using advanced computation - Multi-scale modeling on disparate scales aids researchers understanding of dependencies and constraints of spatio-temporal relationships fundamental to biological organization and function.




Computational Systems Biology of Cancer


Book Description

The future of cancer research and the development of new therapeutic strategies rely on our ability to convert biological and clinical questions into mathematical models—integrating our knowledge of tumour progression mechanisms with the tsunami of information brought by high-throughput technologies such as microarrays and next-generation sequencing. Offering promising insights on how to defeat cancer, the emerging field of systems biology captures the complexity of biological phenomena using mathematical and computational tools. Novel Approaches to Fighting Cancer Drawn from the authors’ decade-long work in the cancer computational systems biology laboratory at Institut Curie (Paris, France), Computational Systems Biology of Cancer explains how to apply computational systems biology approaches to cancer research. The authors provide proven techniques and tools for cancer bioinformatics and systems biology research. Effectively Use Algorithmic Methods and Bioinformatics Tools in Real Biological Applications Suitable for readers in both the computational and life sciences, this self-contained guide assumes very limited background in biology, mathematics, and computer science. It explores how computational systems biology can help fight cancer in three essential aspects: Categorising tumours Finding new targets Designing improved and tailored therapeutic strategies Each chapter introduces a problem, presents applicable concepts and state-of-the-art methods, describes existing tools, illustrates applications using real cases, lists publically available data and software, and includes references to further reading. Some chapters also contain exercises. Figures from the text and scripts/data for reproducing a breast cancer data analysis are available at www.cancer-systems-biology.net.




Systems Biology


Book Description

The first comprehensive single-authored textbook on genome-scale models and the bottom-up approach to systems biology.




Computational Biology in Drug Discovery and Repurposing


Book Description

This new book takes an in-depth look at the emerging and prospective field of computational biology and bioinformatics, which possesses the ability to analyze large accumulated biological data collected from sequence analysis of proteins and genes and cell population with an aim to make new predictions pertaining to drug discovery and new biology. The book explains the basic methodology associated with a bioinformatics and computational approach in drug designing. It then goes on to cover the implementation of computational programming, bioinformatics, pharmacophore modeling, biotechnological techniques, and pharmaceutical chemistry in designing drugs. The major advantage of intervention of computer language or programming is to cut down the number of steps and costs in the field of drug designing, reducing the repeating steps and saving time in screening the potent component for drug or vaccine designing. The book describes algorithms used for drug designing and the use of machine learning and AI in drug delivery and disease diagnosis, which are valuable in clinical decision-making. The implementation of robotics in different diseases like stroke, cancer, COVID-19, etc. is also addressed. Topics include machine learning, AI, databases in drug design, molecular docking, bioinformatics tools, target-based drug design, and immunoinformatics, chemoinformatics, and nanoinformatics in drug design. Drug repurposing in drug design in general as well as for specific diseases, including cancer, Alzheimer’s disease, tuberculosis, COVID-19, etc., is also addressed in depth.




Systematic


Book Description

A brilliant young scientist introduces us to the fascinating field that is changing our understanding of how the body works and the way we can approach healing. SYSTEMATIC is the first book to introduce general readers to systems biology, which is improving medical treatments and our understanding of living things. In traditional bottom-up biology, a biologist might spend years studying how a single protein works, but systems biology studies how networks of those proteins work together--how they promote health and how to remedy the situation when the system isn't functioning properly. Breakthroughs in systems biology became possible only when powerful computer technology enabled researchers to process massive amounts of data to study complete systems, and has led to progress in the study of gene regulation and inheritance, cancer drugs personalized to an individual's genetically unique tumor, insights into how the brain works, and the discovery that the bacteria and other microbes that live in the gut may drive malnutrition and obesity. Systems biology is allowing us to understand more complex phenomena than ever before. In accessible prose, SYSTEMATIC sheds light not only on how systems within the body work, but also on how research is yielding new kinds of remedies that enhance and harness the body's own defenses.







Systems Cancer Biology


Book Description

Cancer is a complex and heterogeneous (systematic) disease that exhibits high levels of robustness against various therapeutic interventions. Due to the complex, heterogeneous, and evolving nature of cancer, it is essential for a system-oriented view to be adopted in order to understand the pathogenic mechanism of cancer which will eventually lead to the drug discovery and treatment of patients. This book not only provides new insights from system modeling and large scale experimental data, but also will allow the reader to perceive the systematic characteristics of cancer under some micro-environments. Based on the systems biology method and genome-wide high throughput data, the book presents the PPI network, gene regulatory network and epigenetic network as an integrated genetic and epigenetic cellular network of lung cancer, bladder cancer, thyroid cancer, colorectal cancer, and liver cancer to investigate their core signaling pathways of the carcinogenesis process to identify their corresponding significant carcinogenic biomarkers as drug targets for systems drug discovery and design. Consequently, the book presents the design of a multiple-molecule drug that can target these biomarkers for the therapeutic treatment of cancer with fewer side effects.




Handbook of Systems Biology


Book Description

This book provides an entry point into Systems Biology for researchers in genetics, molecular biology, cell biology, microbiology and biomedical science to understand the key concepts to expanding their work. Chapters organized around broader themes of Organelles and Organisms, Systems Properties of Biological Processes, Cellular Networks, and Systems Biology and Disease discuss the development of concepts, the current applications, and the future prospects. Emphasis is placed on concepts and insights into the multi-disciplinary nature of the field as well as the importance of systems biology in human biological research. Technology, being an extremely important aspect of scientific progress overall, and in the creation of new fields in particular, is discussed in 'boxes' within each chapter to relate to appropriate topics. - 2013 Honorable Mention for Single Volume Reference in Science from the Association of American Publishers' PROSE Awards - Emphasizes the interdisciplinary nature of systems biology with contributions from leaders in a variety of disciplines - Includes the latest research developments in human and animal models to assist with translational research - Presents biological and computational aspects of the science side-by-side to facilitate collaboration between computational and biological researchers