Bilevel Programming Problems


Book Description

This book describes recent theoretical findings relevant to bilevel programming in general, and in mixed-integer bilevel programming in particular. It describes recent applications in energy problems, such as the stochastic bilevel optimization approaches used in the natural gas industry. New algorithms for solving linear and mixed-integer bilevel programming problems are presented and explained.




Foundations of Bilevel Programming


Book Description

Bilevel programming problems are hierarchical optimization problems where the constraints of one problem (the so-called upper level problem) are defined in part by a second parametric optimization problem (the lower level problem). If the lower level problem has a unique optimal solution for all parameter values, this problem is equivalent to a one-level optimization problem having an implicitly defined objective function. Special emphasize in the book is on problems having non-unique lower level optimal solutions, the optimistic (or weak) and the pessimistic (or strong) approaches are discussed. The book starts with the required results in parametric nonlinear optimization. This is followed by the main theoretical results including necessary and sufficient optimality conditions and solution algorithms for bilevel problems. Stationarity conditions can be applied to the lower level problem to transform the optimistic bilevel programming problem into a one-level problem. Properties of the resulting problem are highlighted and its relation to the bilevel problem is investigated. Stability properties, numerical complexity, and problems having additional integrality conditions on the variables are also discussed. Audience: Applied mathematicians and economists working in optimization, operations research, and economic modelling. Students interested in optimization will also find this book useful.




Knowledge-Based and Intelligent Information and Engineering Systems, Part I


Book Description

The four-volume set LNAI 6881-LNAI 6884 constitutes the refereed proceedings of the 15th International Conference on Knowledge-Based Intelligent Information and Engineering Systems, KES 2011, held in Kaiserslautern, Germany, in September 2011. Part 1: The total of 244 high-quality papers presented were carefully reviewed and selected from numerous submissions. The 61 papers of Part 1 are organized in topical sections on artificial neural networks, connectionists systems and evolutionary computation, machine learning and classical AI, agent, multi-agentsystems, knowledge based and expert systems, intelligent vision, image processing and signal processing, knowledge management, ontologies, and data mining.




Multilevel Optimization: Algorithms and Applications


Book Description

Researchers working with nonlinear programming often claim "the word is non linear" indicating that real applications require nonlinear modeling. The same is true for other areas such as multi-objective programming (there are always several goals in a real application), stochastic programming (all data is uncer tain and therefore stochastic models should be used), and so forth. In this spirit we claim: The word is multilevel. In many decision processes there is a hierarchy of decision makers, and decisions are made at different levels in this hierarchy. One way to handle such hierar chies is to focus on one level and include other levels' behaviors as assumptions. Multilevel programming is the research area that focuses on the whole hierar chy structure. In terms of modeling, the constraint domain associated with a multilevel programming problem is implicitly determined by a series of opti mization problems which must be solved in a predetermined sequence. If only two levels are considered, we have one leader (associated with the upper level) and one follower (associated with the lower level).




Practical Bilevel Optimization


Book Description

The use of optimization techniques has become integral to the design and analysis of most industrial and socio-economic systems. Great strides have been made recently in the solution of large-scale problems arising in such areas as production planning, airline scheduling, government regulation, and engineering design, to name a few. Analysts have found, however, that standard mathematical programming models are often inadequate in these situations because more than a single objective function and a single decision maker are involved. Multiple objective programming deals with the extension of optimization techniques to account for several objective functions, while game theory deals with the inter-personal dynamics surrounding conflict. Bilevel programming, the focus of this book, is in a narrow sense the combination of the two. It addresses the problern in which two decision makers, each with their individual objectives, act and react in a noncooperative, sequential manner. The actions of one affect the choices and payoffs available to the other but neither player can completely dominate the other in the traditional sense.




Optimality Conditions: Abnormal and Degenerate Problems


Book Description

This book is devoted to one of the main questions of the theory of extremal problems, namely, to necessary and sufficient extremality conditions. The book consists of four parts. First, the abstract minimization problem with constraints is studied. The next chapter is devoted to one of the most important classes of extremal problems, the optimal control problem. Next, one of the main objects of the calculus of variations is studied, the integral quadratic form. Finally, local properties of smooth nonlinear mappings in a neighborhood of an abnormal point will be discussed. Audience: The book is intended for researchers interested in optimization problems. The book may also be useful for advanced students and postgraduate students.




Metaheuristics for Bi-level Optimization


Book Description

This book provides a complete background on metaheuristics to solve complex bi-level optimization problems (continuous/discrete, mono-objective/multi-objective) in a diverse range of application domains. Readers learn to solve large scale bi-level optimization problems by efficiently combining metaheuristics with complementary metaheuristics and mathematical programming approaches. Numerous real-world examples of problems demonstrate how metaheuristics are applied in such fields as networks, logistics and transportation, engineering design, finance and security.




Applied Optimization


Book Description

The starting point in the formulation of any numerical problem is to take an intuitive idea about the problem in question and to translate it into precise mathematical language. This book provides step-by-step descriptions of how to formulate numerical problems and develops techniques for solving them. A number of engineering case studies motivate the development of efficient algorithms that involve, in some cases, transformation of the problem from its initial formulation into a more tractable form. Five general problem classes are considered: linear systems of equations, non-linear systems of equations, unconstrained optimization, equality-constrained optimization and inequality-constrained optimization. The book contains many worked examples and homework exercises and is suitable for students of engineering or operations research taking courses in optimization. Supplementary material including solutions, lecture slides and appendices are available online at www.cambridge.org/9780521855648.




Proceedings of Sixth International Conference on Soft Computing for Problem Solving


Book Description

This two-volume book gathers the proceedings of the Sixth International Conference on Soft Computing for Problem Solving (SocProS 2016), offering a collection of research papers presented during the conference at Thapar University, Patiala, India. Providing a veritable treasure trove for scientists and researchers working in the field of soft computing, it highlights the latest developments in the broad area of “Computational Intelligence” and explores both theoretical and practical aspects using fuzzy logic, artificial neural networks, evolutionary algorithms, swarm intelligence, soft computing, computational intelligence, etc.




An Introduction to Linear Programming and Game Theory


Book Description

Praise for the Second Edition: "This is quite a well-done book: very tightly organized, better-than-average exposition, and numerous examples, illustrations, and applications." —Mathematical Reviews of the American Mathematical Society An Introduction to Linear Programming and Game Theory, Third Edition presents a rigorous, yet accessible, introduction to the theoretical concepts and computational techniques of linear programming and game theory. Now with more extensive modeling exercises and detailed integer programming examples, this book uniquely illustrates how mathematics can be used in real-world applications in the social, life, and managerial sciences, providing readers with the opportunity to develop and apply their analytical abilities when solving realistic problems. This Third Edition addresses various new topics and improvements in the field of mathematical programming, and it also presents two software programs, LP Assistant and the Solver add-in for Microsoft Office Excel, for solving linear programming problems. LP Assistant, developed by coauthor Gerard Keough, allows readers to perform the basic steps of the algorithms provided in the book and is freely available via the book's related Web site. The use of the sensitivity analysis report and integer programming algorithm from the Solver add-in for Microsoft Office Excel is introduced so readers can solve the book's linear and integer programming problems. A detailed appendix contains instructions for the use of both applications. Additional features of the Third Edition include: A discussion of sensitivity analysis for the two-variable problem, along with new examples demonstrating integer programming, non-linear programming, and make vs. buy models Revised proofs and a discussion on the relevance and solution of the dual problem A section on developing an example in Data Envelopment Analysis An outline of the proof of John Nash's theorem on the existence of equilibrium strategy pairs for non-cooperative, non-zero-sum games Providing a complete mathematical development of all presented concepts and examples, Introduction to Linear Programming and Game Theory, Third Edition is an ideal text for linear programming and mathematical modeling courses at the upper-undergraduate and graduate levels. It also serves as a valuable reference for professionals who use game theory in business, economics, and management science.