Bilinear Forms and Zonal Polynomials


Book Description

The book deals with bilinear forms in real random vectors and their generalizations as well as zonal polynomials and their applications in handling generalized quadratic and bilinear forms. The book is mostly self-contained. It starts from basic principles and brings the readers to the current research level in these areas. It is developed with detailed proofs and illustrative examples for easy readability and self-study. Several exercises are proposed at the end of the chapters. The complicated topic of zonal polynomials is explained in detail in this book. The book concentrates on the theoretical developments in all the topics covered. Some applications are pointed out but no detailed application to any particular field is attempted. This book can be used as a textbook for a one-semester graduate course on quadratic and bilinear forms and/or on zonal polynomials. It is hoped that this book will be a valuable reference source for graduate students and research workers in the areas of mathematical statistics, quadratic and bilinear forms and their generalizations, zonal polynomials, invariant polynomials and related topics, and will benefit statisticians, mathematicians and other theoretical and applied scientists who use any of the above topics in their areas. Chapter 1 gives the preliminaries needed in later chapters, including some Jacobians of matrix transformations. Chapter 2 is devoted to bilinear forms in Gaussian real ran dom vectors, their properties, and techniques specially developed to deal with bilinear forms where the standard methods for handling quadratic forms become complicated.




Bilinear Forms and Zonal Polynomials


Book Description

This monograph deals with bilinear forms in real random vectors and their generalizations. The authors show how zonal polynomials may be used to analyze such forms and thus to apply these concepts in a variety of statistical settings. Assuming a graduate-level background in statistics, this account is self-contained and each chapter concludes with exercises making the book ideal for a researcher seeking a straight-forward introduction to this topic. Chapter 1 covers preliminaries including a treatment of the Jacobians of matrix transformation and chapter 2 then introduces bilinear forms in Gaussian random real vectors. Chapter 3 covers quadratic forms in elliptically contoured and spherically symmetric vectors whilst chapters 4 and 5 introduce and then apply the theory of zonal polynomials to the theory of distributions of generalized quadratic and bilinear forms.




Special Functions: Fractional Calculus and the Pathway for Entropy


Book Description

This book is a printed edition of the Special Issue "Special Functions: Fractional Calculus and the Pathway for Entropy Dedicated to Professor Dr. A.M. Mathai on the occasion of his 80th Birthday" that was published in Axioms




Linear Algebra


Book Description

In order not to intimidate students by a too abstract approach, this textbook on linear algebra is written to be easy to digest by non-mathematicians. It introduces the concepts of vector spaces and mappings between them without dwelling on statements such as theorems and proofs too much. It is also designed to be self-contained, so no other material is required for an understanding of the topics covered. As the basis for courses on space and atmospheric science, remote sensing, geographic information systems, meteorology, climate and satellite communications at UN-affiliated regional centers, various applications of the formal theory are discussed as well. These include differential equations, statistics, optimization and some engineering-motivated problems in physics. Contents Vectors Matrices Determinants Eigenvalues and eigenvectors Some applications of matrices and determinants Matrix series and additional properties of matrices




Fractional Calculus


Book Description

FRACTIONAL CALCULUS: Theory and Applications deals with differentiation and integration of arbitrary order. The origin of this subject can be traced back to the end of seventeenth century, the time when Newton and Leibniz developed foundations of differential and integral calculus. Nonetheless, utility and applicability of FC to various branches of science and engineering have been realized only in last few decades. Recent years have witnessed tremendous upsurge in research activities related to the applications of FC in modeling of real-world systems. Unlike the derivatives of integral order, the non-local nature of fractional derivatives correctly models many natural phenomena containing long memory and give more accurate description than their integer counterparts.The present book comprises of contributions from academicians and leading researchers and gives a panoramic overview of various aspects of this subject: Introduction to Fractional Calculus Fractional Differential Equations Fractional Ordered Dynamical Systems Fractional Operators on Fractals Local Fractional Derivatives Fractional Control Systems Fractional Operators and Statistical Distributions Applications to Engineering




Advances on Theoretical and Methodological Aspects of Probability and Statistics


Book Description

At the International Indian Statistical Association Conference, held at McMaster University in Ontario, Canada, participants focused on advancements in theory and methodology of probability and statistics. This is one of two volumes containing invited papers from the meeting. The 32 chapters deal with different topics of interest, including stochastic processes and inference, distributions and characterizations, inference, Bayesian inference, selection methods, regression methods, and methods in health research. The text is ideal for applied mathematicians, statisticians, and researchers in the field.




Jacobians of Matrix Transformations and Functions of Matrix Argument


Book Description

This book concentrates on the topic of evaluation of Jacobians in some specific linear as well as nonlinear matrix transformations, in the real and complex cases, which are widely applied in the statistical, physical, engineering, biological and social sciences. It aims to develop some techniques systematically so that anyone with a little exposure to multivariable calculus can easily follow the steps and understand the various methods by which the Jacobians in complicated matrix transformations are evaluated. The material is developed slowly, with lots of worked examples, aimed at self-study. Some exercises are also given, at the end of each section.The book is a valuable reference for statisticians, engineers, physicists, econometricians, applied mathematicians and people working in many other areas. It can be used for a one-semester graduate level course on Jacobians and functions of matrix argument.




Symmetric Functions and Hall Polynomials


Book Description

This reissued classic text is the acclaimed second edition of Professor Ian Macdonald's groundbreaking monograph on symmetric functions and Hall polynomials. The first edition was published in 1979, before being significantly expanded into the present edition in 1995. This text is widely regarded as the best source of information on Hall polynomials and what have come to be known as Macdonald polynomials, central to a number of key developments in mathematics and mathematical physics in the 21st century Macdonald polynomials gave rise to the subject of double affine Hecke algebras (or Cherednik algebras) important in representation theory. String theorists use Macdonald polynomials to attack the so-called AGT conjectures. Macdonald polynomials have been recently used to construct knot invariants. They are also a central tool for a theory of integrable stochastic models that have found a number of applications in probability, such as random matrices, directed polymers in random media, driven lattice gases, and so on. Macdonald polynomials have become a part of basic material that a researcher simply must know if (s)he wants to work in one of the above domains, ensuring this new edition will appeal to a very broad mathematical audience. Featuring a new foreword by Professor Richard Stanley of MIT.




The H-Function


Book Description

TheH-function or popularly known in the literature as Fox’sH-function has recently found applications in a large variety of problems connected with reaction, diffusion, reaction–diffusion, engineering and communication, fractional differ- tial and integral equations, many areas of theoretical physics, statistical distribution theory, etc. One of the standard books and most cited book on the topic is the 1978 book of Mathai and Saxena. Since then, the subject has grown a lot, mainly in the elds of applications. Due to popular demand, the authors were requested to - grade and bring out a revised edition of the 1978 book. It was decided to bring out a new book, mostly dealing with recent applications in statistical distributions, pa- way models, nonextensive statistical mechanics, astrophysics problems, fractional calculus, etc. and to make use of the expertise of Hans J. Haubold in astrophysics area also. It was decided to con ne the discussion toH-function of one scalar variable only. Matrix variable cases and many variable cases are not discussed in detail, but an insight into these areas is given. When going from one variable to many variables, there is nothing called a unique bivariate or multivariate analogue of a givenfunction. Whatever be the criteria used, there may be manydifferentfunctions quali ed to be bivariate or multivariate analogues of a given univariate function. Some of the bivariate and multivariateH-functions, currently in the literature, are also questioned by many authors.




Probability and Statistics


Book Description

This book offers an introduction to concepts of probability theory, probability distributions relevant in the applied sciences, as well as basics of sampling distributions, estimation and hypothesis testing. As a companion for classes for engineers and scientists, the book also covers applied topics such as model building and experiment design. Contents Random phenomena Probability Random variables Expected values Commonly used discrete distributions Commonly used density functions Joint distributions Some multivariate distributions Collection of random variables Sampling distributions Estimation Interval estimation Tests of statistical hypotheses Model building and regression Design of experiments and analysis of variance Questions and answers