Bio-Based Nanoemulsions for Agri-Food Applications


Book Description

Recent agricultural, food, and pharmaceutical research focuses attention on the development of delivery systems that can encapsulate, protect, and deliver natural compounds. Nanoemulsions are recognized as the best delivery systems for natural-origin nutraceuticals and phytochemicals, having many agri-food applications. Bio-based Nanoemulsions for Agri-Food Applications provides information on food-grade nanoemulsions and their application in agriculture and the food industry. This book covers concepts, techniques, current advances, and challenges in the formulation of the application of emerging food grade nanoemulsions. Particular attention is placed on food-grade nanoemulsion production methods and components used, such as plant/microbial products, biosurfactants, cosurfactants, emulsifiers, ligand targets, and bioactive/functional ingredients. This is an important reference source for materials scientists, engineers and food scientists who are looking to understand how nanoemulsions are being used in the agri-food sector. - Provides an overview of a range of bio-based nanoemulsions used in the agrifood sector - Explores how nanotechnology improves the properties of bio-based emulsions - Assesses the major challenges of manufacturing nanoemulsions at an industrial scale




Polymers for Agri-Food Applications


Book Description

This book presents an exhaustive analysis of the trends in the development and use of natural and synthetic polymer systems aimed at sustainable agricultural production. The polymers have allowed the development of controlled and released systems of agrochemicals such as pesticides, fertilizers and phytohormones through micro and nanoencapsulated systems, which protect and stimulate the growth of crops at low costs and without damage to the environment. Hydrogel systems from natural and synthetic polymers have also had their place in the agricultural industry, since they allow to maintain the humidity conditions of the crops for their correct development in drought times. Mulch films made of polymers have also become important in the control of weeds and pests in crops, as well as the use of edible coatings applied to fruits and vegetables during post-harvest, which reduce the losses of these perishable foods. Currently, the systems indicated, as well as others, are already used on a large scale. However, research studies in this area have been limited compared to other polymer applications. This book collects useful information for researchers, students and technologies related to the polymer technology and agri-food production. In this book, world-renowned researchers have participated, including associate editors of important journals, as well as researchers working in the area of research and development (R&D) of leading agri-food industries in the manufacture of agricultural inputs.




Polymers for Agri-Food Applications


Book Description

This book presents an exhaustive analysis of the trends in the development and use of natural and synthetic polymer systems aimed at sustainable agricultural production. The polymers have allowed the development of controlled and released systems of agrochemicals such as pesticides, fertilizers and phytohormones through micro and nanoencapsulated systems, which protect and stimulate the growth of crops at low costs and without damage to the environment. Hydrogel systems from natural and synthetic polymers have also had their place in the agricultural industry, since they allow to maintain the humidity conditions of the crops for their correct development in drought times. Mulch films made of polymers have also become important in the control of weeds and pests in crops, as well as the use of edible coatings applied to fruits and vegetables during post-harvest, which reduce the losses of these perishable foods. Currently, the systems indicated, as well as others, are already used on a large scale. However, research studies in this area have been limited compared to other polymer applications. This book collects useful information for researchers, students and technologies related to the polymer technology and agri-food production. In this book, world-renowned researchers have participated, including associate editors of important journals, as well as researchers working in the area of research and development (R&D) of leading agri-food industries in the manufacture of agricultural inputs.




Current Trends in Green Nano-emulsions


Book Description

This book gives a complete overview of current developments on the green synthesis and extraction of nano-emulsions for numerous uses in food, agriculture, biomedical, and cosmetics sectors. In the food and agriculture section, the book demonstrates the use of nano-emulsions to deliver nutraceuticals, coloring, and flavoring agents, in the development of biodegradable coating, improving the quality of packing films and enhancing the shelf life and nutritional value of foods. It also shows that nano-emulsions are very good for pesticides formulation where it enhances the solubility of poorly water-soluble pesticides, resulting in increased pesticide bioactivity compared to conventional pesticides. In the biomedicine applications section, the chapters show that nano-emulsion can dissolve hydrophobic drugs and is used as a drug delivery system for many cancers treatment such as lung cancer, breast cancer, prostate cancer, liver, and gastric cancer. Also, nano-emulsions are an excellent candidate for encapsulating drugs or imaging probes for targeted delivery and immunotherapy. This book caters to scientists, researchers, and students interested in nanotechnology, nanomedicine, environmental science, plant science, agriculture, chemistry, biotechnology, pharmacognosy, pharmaceuticals, industrial chemistry, and many other interdisciplinary subjects.







Bioinoculants with Nano-compounds to Improve Soil Health: A Step Toward Sustainable Agriculture


Book Description

In recent decades, agrochemicals have enhanced crop productivity to meet increasing global food requirements. However, prolonged and extensive use of agrochemicals has resulted in contamination that persists in the soil system which can be biomagnified in the food chain. Furthermore, toxic chemicals adversely affect important soil microbial biota, the key drivers of biogeochemical cycles. This concern has raised the need to develop environmentally friendly and cost-effective nano- and micro-biotechnology strategies to minimize the adverse impact of agrochemicals and pesticide residues on soil microbiota, soil fertility, and their biomagnification in food crops. Nano-bioinoculants - the combination of nano-compounds and bioinoculants - have been increasingly used as soil amendments. They can improve agri-potential and soil health by maintaining soil physico- and biological properties, microbial diversity, and the nutrient-solubilizing microbial population. They also aid in improving crop yields and reducing agrochemical and pesticide residues. Nano-bioinoculants are more efficient than other methods for removing contaminants due to their small size, high reactivity, and catalytic activities. Several types of nano-compounds (chitosan, zeolite, gypsum, and silicon dioxide) have been used in conjunction with beneficial microbes (bacteria fungi, actinomycetes & endophytic bacteria) as nano-bioinoculants.




Application of Nanotechnology in Food Science, Processing and Packaging


Book Description

This book entitled ‘Application of Nanotechnology in Food Science, Processing and Packaging’ presents up-to-date information on the emerging roles of nanotechnology in food industry, its fundamental concepts, techniques and applications. The application of nanotechnology in the food industry is an emerging area which has found tremendous use in improving food quality through the enhancement of food taste, texture, colour, and flavour. Also, its application has improved the bioavailability and target delivery of certain bioactive food ingredients through controlled release of nutrients, a feature that is impossible with the conventional methods of food processing. The application of nanotechnology in food packaging for the detection of contaminants, pathogens, biotoxins and pesticides through nanosensor safety evaluations has led to the increase in shelf-life of products and quality assurance through the detection and monitoring of toxins. This book taps from the experience of subject experts from key institutions around the world. The users of this book will benefit greatly as the chapters were simplified and arranged carefully to aid proper understanding, consistency and continuity.




The Impact of Nanoparticles on Agriculture and Soil


Book Description

The Impact of Nanoparticles on Agriculture and Soil, part of the Nanomaterials-Plant Interaction series, contributes the most recent insights into understanding the cellular interactions of nanoparticles in an agricultural setting, focusing on current applications and means of evaluating future prospects. In order to ensure and improve the biosafety of nanoparticles, it is a primary concern to understand cellular bioprocess like nanomaterial's cellular uptake and their influence on cellular structural, functional and genetic components. This book addresses these and other important aspects in detail along with showcasing their applications in the area of agriculture. With an international team of authors, and experienced editors, this book will be valuable to those working to understand and advance nanoscience to benefit agricultural production and human and environmental welfare. In-depth knowledge of these bioprocess will enable researchers to engineer nanomaterials for enhanced biosafety. - Guides the assessment of nanomaterials' impact on agricultural and soil cellular metabolism and physiological characteristics - Provides in-depth insights into potential risks and hazards of nanoparticles - Builds a foundation for further research and development




Nanobiotechnology in Bioformulations


Book Description

With the recent shift of chemical fertilizers and pesticides to organic agriculture, the employment of microbes that perform significant beneficial functions for plants has been highlighted. This book presents timely discussion and coverage on the use of microbial formulations, which range from powdered or charcoal-based to solution and secondary metabolite-based bioformulations. Bioformulation development of biofertilizers and biopesticides coupled with the advantages of nanobiotechnology propose significant applications in the agricultural section including nanobiosensors, nanoherbicides, and smart transport systems for the regulated release of agrochemical. Moreover, the formulation of secondary metabolites against individual phytopathogens could be used irrespective of geographical positions with higher disease incidences. The prospective advantages and uses of nanobiotechnology generate tremendous interest, as it could augment production of agricultural produce while being cost-effective both energetically and economically. This bioformulation approach is incomparable to existing technology, as the bioformulation would explicitly target the particular pathogen without harming the natural microbiome of the ecosystem. Nanobiotechnology in Bioformulations covers the constraints associated with large-scale development and commercialization of bioinoculant formations. Furthermore, exclusive emphasis is be placed on next-generation efficient bioinoculants having secondary metabolite formulations with longer shelf life and advanced competence against several phytopathogens. Valuable chapters deal with bioformulation strategies that use divergent groups of the microbiome and include detailed diagrammatic and pictorial representation. This book will be highly beneficial for both experts and novices in the fields of microbial bioformulation, nanotechnology, and nano-microbiotechnology. It discusses the prevailing status and applications available for microbial researchers and scientists, agronomists, students, environmentalists, agriculturists, and agribusiness professionals, as well as to anyone devoted to sustaining the ecosystem.




Nanotechnology in Plant Health


Book Description

Nanotechnology is an emerging, pivotal platform for enhancing plant health. On one hand, nanomaterials serve as crucial nutrients and nanofertilizers, while on the other, they have demonstrated their potential for diagnosing plant diseases, delivering fungicides and pesticides, and providing therapeutic solutions against diseases caused by pathogens and parasites. The book Nanotechnology in Plant Health explores the significance of nanomaterials in plant nutrition, nanofertilizers, and their role in managing plant pathogens, including the most formidable ones like quarantined strains. This unique publication represents a global team of contributors and stands out for its comprehensive coverage of plant nanonutrients, nanofertilizers, and nano-plant protectors.