Introduction to Biomedical Engineering


Book Description

Under the direction of John Enderle, Susan Blanchard and Joe Bronzino, leaders in the field have contributed chapters on the most relevant subjects for biomedical engineering students. These chapters coincide with courses offered in all biomedical engineering programs so that it can be used at different levels for a variety of courses of this evolving field. Introduction to Biomedical Engineering, Second Edition provides a historical perspective of the major developments in the biomedical field. Also contained within are the fundamental principles underlying biomedical engineering design, analysis, and modeling procedures. The numerous examples, drill problems and exercises are used to reinforce concepts and develop problem-solving skills making this book an invaluable tool for all biomedical students and engineers. New to this edition: Computational Biology, Medical Imaging, Genomics and Bioinformatics.* 60% update from first edition to reflect the developing field of biomedical engineering* New chapters on Computational Biology, Medical Imaging, Genomics, and Bioinformatics* Companion site: http://intro-bme-book.bme.uconn.edu/* MATLAB and SIMULINK software used throughout to model and simulate dynamic systems* Numerous self-study homework problems and thorough cross-referencing for easy use




Omics Technologies and Bio-engineering


Book Description

Omics Technologies and Bio-Engineering: Towards Improving Quality of Life, Volume 1 is a unique reference that brings together multiple perspectives on omics research, providing in-depth analysis and insights from an international team of authors. The book delivers pivotal information that will inform and improve medical and biological research by helping readers gain more direct access to analytic data, an increased understanding on data evaluation, and a comprehensive picture on how to use omics data in molecular biology, biotechnology and human health care. - Covers various aspects of biotechnology and bio-engineering using omics technologies - Focuses on the latest developments in the field, including biofuel technologies - Provides key insights into omics approaches in personalized and precision medicine - Provides a complete picture on how one can utilize omics data in molecular biology, biotechnology and human health care




Career Development in Bioengineering and Biotechnology


Book Description

This indispensable guide provides a roadmap to the broad and varied career development opportunities in bioengineering, biotechnology, and related fields. Eminent practitioners lay out career paths related to academia, industry, government and regulatory affairs, healthcare, law, marketing, entrepreneurship, and more. Lifetimes of experience and wisdom are shared, including "war stories," strategies for success, and discussions of the authors’ personal views and motivations.




Quantitative Fundamentals of Molecular and Cellular Bioengineering


Book Description

A comprehensive presentation of essential topics for biological engineers, focusing on the development and application of dynamic models of biomolecular and cellular phenomena. This book describes the fundamental molecular and cellular events responsible for biological function, develops models to study biomolecular and cellular phenomena, and shows, with examples, how models are applied in the design and interpretation of experiments on biological systems. Integrating molecular cell biology with quantitative engineering analysis and design, it is the first textbook to offer a comprehensive presentation of these essential topics for chemical and biological engineering. The book systematically develops the concepts necessary to understand and study complex biological phenomena, moving from the simplest elements at the smallest scale and progressively adding complexity at the cellular organizational level, focusing on experimental testing of mechanistic hypotheses. After introducing the motivations for formulation of mathematical rate process models in biology, the text goes on to cover such topics as noncovalent binding interactions; quantitative descriptions of the transient, steady state, and equilibrium interactions of proteins and their ligands; enzyme kinetics; gene expression and protein trafficking; network dynamics; quantitative descriptions of growth dynamics; coupled transport and reaction; and discrete stochastic processes. The textbook is intended for advanced undergraduate and graduate courses in chemical engineering and bioengineering, and has been developed by the authors for classes they teach at MIT and the University of Minnesota.




Bio-Engineering Approaches to Cancer Diagnosis and Treatment


Book Description

Bioengineering Approaches to Cancer Diagnosis and Treatment is written for an audience of senior undergraduate students and graduate students in mechanical, electrical and biomedical engineering fields and other professionals in medicine. It is ideally structured for teaching and for those who are working in cancer bioengineering or interdisciplinary projects. The book's authors bring a unique perspective from their expertise in immunology, nanobiomaterials and heat transfer. Topical coverage includes an introduction to the fundamentals of bioengineering and engineering approaches for cancer diagnosis, cancer treatment via case studies, and sections on imaging, immunotherapy, cell therapy, drug delivery, ultrasound and microfluidics in cancer treatment. - Provides fully supported case studies relating to cancer diagnosis and therapy - Pairs the basic fundamentals of engineering and biomedical engineering and applies them to the diagnosis of cancer




Encyclopedia of Biomedical Engineering


Book Description

Encyclopedia of Biomedical Engineering, Three Volume Set is a unique source for rapidly evolving updates on topics that are at the interface of the biological sciences and engineering. Biomaterials, biomedical devices and techniques play a significant role in improving the quality of health care in the developed world. The book covers an extensive range of topics related to biomedical engineering, including biomaterials, sensors, medical devices, imaging modalities and imaging processing. In addition, applications of biomedical engineering, advances in cardiology, drug delivery, gene therapy, orthopedics, ophthalmology, sensing and tissue engineering are explored. This important reference work serves many groups working at the interface of the biological sciences and engineering, including engineering students, biological science students, clinicians, and industrial researchers. Provides students with a concise description of the technologies at the interface of the biological sciences and engineering Covers all aspects of biomedical engineering, also incorporating perspectives from experts working within the domains of biomedicine, medical engineering, biology, chemistry, physics, electrical engineering, and more Contains reputable, multidisciplinary content from domain experts Presents a ‘one-stop’ resource for access to information written by world-leading scholars in the field




Advances in Computational and Bio-Engineering


Book Description

This book gathers state-of-the-art research in computational engineering and bioengineering to facilitate knowledge exchange between various scientific communities. Computational engineering (CE) is a relatively new discipline that addresses the development and application of computational models and simulations often coupled with high-performance computing to solve complex physical problems arising in engineering analysis and design in the context of natural phenomena. Bioengineering (BE) is an important aspect of computational biology, which aims to develop and use efficient algorithms, data structures, and visualization and communication tools to model biological systems. Today, engineering approaches are essential for biologists, enabling them to analyse complex physiological processes, as well as for the pharmaceutical industry to support drug discovery and development programmes.




Biomedical Engineering


Book Description

The second edition of this popular introductory undergraduate textbook uses examples, applications, and profiles of biomedical engineers to show students the relevance of the theory and how it can be used to solve real problems in human medicine. The essential molecular biology, cellular biology, and human physiology background is included for students to understand the context in which biomedical engineers work. Updates throughout highlight important advances made over recent years, including iPS cells, microRNA, nanomedicine, imaging technology, biosensors, and drug delivery systems, giving students a modern description of the various subfields of biomedical engineering. Over two hundred quantitative and qualitative exercises, many new to this edition, help consolidate learning, whilst a solutions manual, password-protected for instructors, is available online. Finally, students can enjoy an expanded set of leader profiles in biomedical engineering within the book, showcasing the broad range of career paths open to students who make biomedical engineering their calling.




Fundamental Bioengineering


Book Description

A thorough introduction to the basics of bioengineering, with a focus on applications in the emerging "white" biotechnology industry. As such, this latest volume in the "Advanced Biotechnology" series covers the principles for the design and analysis of industrial bioprocesses as well as the design of bioremediation systems, and several biomedical applications. No fewer than seven chapters introduce stoichiometry, kinetics, thermodynamics and the design of ideal and real bioreactors, illustrated by more than 50 practical examples. Further chapters deal with the tools that enable an understanding of the behavior of cell cultures and enzymatically catalyzed reactions, while others discuss the analysis of cultures at the level of the cell, as well as structural frameworks for the successful scale-up of bioreactions. In addition, a short survey of downstream processing options and the control of bioreactions is given. With contributions from leading experts in industry and academia, this is a comprehensive source of information peer-reviewed by experts in the field.




Materials for Biomedical Engineering: Thermoset and Thermoplastic Polymers


Book Description

Materials for Biomedical Engineering: Thermoset and Thermoplastic Polymers presents the newest and most interesting approaches to intelligent polymer engineering in both current and future progress in biomedical sciences. Particular emphasis is placed on the properties needed for each selected polymer and how to increase their biomedical potential in varying applications, such as drug delivery and tissue engineering. These materials are intended for use in diagnoses, therapy and prophylaxis, but are also relatable to other biomedical related applications, such as sensors. Recent developments and future perspectives regarding their use in biomedicine are discussed in detail, making this book an ideal source on the topic. - Highlights the most well-known applications of thermoset and thermoplastic polymers in biological and biomedical engineering - Presents novel opportunities and ideas for developing or improving technologies in materials for companies, those in biomedical industries, and others - Features at least 50% of references from the last 2-3 years