Biocompatible Glasses


Book Description

This book focuses on the applications of bioglasses in the biomedical field. It starts with the history and evolution of bioglasses before moving on to the structure and percolation theory, and lastly investigating their current and potential future applications in various fields including dentistry, tissue engineering, bone regeneration, ophthalmology, and drug delivery. The chapters were written by a team of international experts in the field and will be of great interest not only to material scientists, but also to medical doctors and other health sector professionals.




Bioglass


Book Description

This book discusses properties, functions and applications of bioglass. Chapter One provides an overview and compares some glasses and glass ceramics obtained by different preparation methods by means of structural, morphological and textural properties in order to better understand the importance of selecting a certain type of biomaterial depending on its specific application. Chapter Two describes and discusses the concepts, trends and advances related to the preparation of highly textured bioglasses and the subsequent combination with biopolymers, as advanced biocomposites for tissue engineering. Chapter Three presents a new method of fabricating metal phosphates via interaction of metal oleates with tributylphosphate solution.




Bioceramics and Biocomposites


Book Description

Provides comprehensive coverage of the research into and clinical uses of bioceramics and biocomposites Developments related to bioceramics and biocomposites appear to be one the most dynamic areas in the field of biomaterials, with multiple applications in tissue engineering and medical devices. This book covers the basic science and engineering of bioceramics and biocomposites for applications in dentistry and orthopedics, as well as the state-of-the-art aspects of biofabrication techniques, tissue engineering, remodeling, and regeneration of bone tissue. It also provides insight into the use of bionanomaterials to create new functionalities when interfaced with biological molecules or structures. Featuring contributions from leading experts in the field, Bioceramics and Biocomposites: From Research to Use in Clinical Practice offers complete coverage of everything from extending the concept of hemopoietic and stromal niches, to the evolution of bioceramic-based scaffolds. It looks at perspectives on and trends in bioceramics in endodontics, and discusses the influence of newer biomaterials use on the structuring of the clinician’s attitude in dental practice or in orthopedic surgery. The book also covers such topics as biofabrication techniques for bioceramics and biocomposites; glass ceramics: calcium phosphate coatings; brain drug delivery bone substitutes; and much more. Presents the biggest trends in bioceramics and biocomposites relating to medical devices and tissue engineering products Systematically presents new information about bioceramics and biocomposites, developing diagnostics and improving treatments and their influence on the clinicians' approaches Describes how to use these biomaterials to create new functionalities when interfaced with biological molecules or structures Offers a range of applications in clinical practice, including bone tissue engineering, remodeling, and regeneration Delineates essential requirements for resorbable bioceramics Discusses clinical results obtained in dental and orthopedic applications Bioceramics and Biocomposites: From Research to Use in Clinical Practice is an excellent resource for biomaterials scientists and engineers, bioengineers, materials scientists, and engineers. It will also benefit mechanical engineers and biochemists who work with biomaterials scientists.




Bio-Ceramics with Clinical Applications


Book Description

This publication offers a unique approach that links the materials science of bioceramics to clinical needs and applications. Providing a structured account of this highly active area of research, the book reviews the clinical applications in bone tissue engineering, bone regeneration, joint replacement, drug-delivery systems and biomimetism, this book is an ideal resource for materials scientists and engineers, as well as for clinicians. From the contents: Part I Introduction 1. Bioceramics 2. Biomimetics Part II Materials 3. Calcium Phosphate Bioceramics 4. Silica-based Ceramics: Glasses 5. Silica-based Ceramics: Mesoporous Silica 6. Alumina, Zirconia, and Other Non-oxide Inert Bioceramics 7. Carbon-based Materials in Biomedicine Part III Material Shaping 8. Cements 9. Bioceramic Coatings for Medical Implants 10. Scaffold Designing Part IV Research on Future Ceramics 11. Bone Biology and Regeneration 12. Ceramics for Drug Delivery 13. Ceramics for Gene Transfection 14. Ceramic Nanoparticles for Cancer Treatment




Bioactive Glasses


Book Description

Bioactive Glasses: Materials, Properties and Applications, Second Edition provides revised, expanded and updated content on the current status of this unique material, including its properties, technologies and applications. The book is suitable for those active in the biomaterials and bioengineering field, and includes eight new chapters that cover material types, computational modeling, coatings and applications. Chapters deal with the materials and mechanical properties of bioactive glass and the applications of bioactive glasses, covering their uses in wound healing, maxillofacial surgery and bone tissue engineering, among other topics. With its distinguished editor and expert team of international contributors, the book is an invaluable reference for researchers and scientists in the field of biomaterials, both in academia and industry. - Provides a detailed review of bioactive glasses, their properties, technologies and applications - Comprehensively covers the materials and mechanical properties of bioactive glass and their further applications, including wound healing, maxillofacial surgery and bone tissue engineering - Suitable for those active in the biomaterials and bioengineering field




Bioceramic Coatings for Medical Implants


Book Description

Reflecting the progress in recent years, this book provides in-depth information on the preparation, chemistry, and engineering of bioceramic coatings for medical implants. It is authored by two renowned experts with over 30 years of experience in industry and academia, who know the potentials and pitfalls of the techniques concerned. Following an introduction to the principles of biocompatibility, they present the structures and properties of various bioceramics from alumina to zirconia. The main part of the work focuses on coating technologies, such as chemical vapor deposition, sol-gel deposition and thermal spraying. There then follows a discussion of the major interactions of bioceramics with bone or tissue cells, complemented by an overview of the in-vitro testing methods of the biomineralization properties of bioceramics. The text is rounded off by chapters on the functionalization of bioceramic coatings and a look at future trends. As a result, the authors bring together all aspects of the latest techniques for designing, depositing, testing, and implementing improved and novel bioceramic coating compositions, providing a full yet concise overview for beginners and professionals.




Inorganic Biomaterials


Book Description

Inorganic biomaterials include materials for e.g. dental restorations, biocompatible materials for orthopedic appliances and bioactive materials. However, inorganic biomaterials are also developed for use in tissue regeneration, e.g. wound healing. These products either consist of crystalline phases, such as Al2O3 or ZrO2, which makes them suitable for use in hip bone replacement or they are composed of tricalcium phosphate and used as resorbable biomaterials. Or, they contain glassy phases, such as BIOGLASS®, and are employed as bioactive biomaterials to bond to living bone. Inorganic biomaterials are also used to develop inorganic – organic composites which are suitable for use as bioactive products or to produce dental filling materials. In general, the development of composites is state of the art. However, it is also a future technology. Biomaterials for dental restorations consist of glassy or crystalline phases. Glass-ceramics represent a special group of inorganic biomaterials for dental restorations. Glass-ceramics are composed of at least one inorganic glassy phase and at least one crystalline phase. These products demonstrate a combination of properties, which include excellent aesthetics and the ability to mimic the optical properties of natural teeth, as well as high strength and toughness. They can be processed using special processing procedures, e.g. machining, moulding and sintering, to fabricate high quality products. Sintered oxide ceramics, such as Al2O3 or ZrO2, are also used for the fabrication of dental restorations. These products can be veneered with other biomaterials, or they can be polished to achieve the best possible surface quality. The manuscripts dealing with inorganic biomaterials should focus on the development of the products, especially on their chemical nature, the phase formation processes and all the details related to their processing. Very important are the mechanisms of phase formation. The reader of the manuscript should understand all of these reactions in detail. As far as application is concerned, it is important to describe the main properties of the developed products based on the valid standards, e.g. the ISO standards. The papers published should show that the products comply with these standards. It is very important to understand the relationship between biomass and biomaterials. This will help young scientists to follow the development of biomaterials with new, unexpected properties. He manuscripts published in "Frontiers" should also focus on the application of the biomaterials. Every manuscript should show the most important application of the material presented. There are different journals that deal with specific product categories, eg "Dental Materials". However, "Frontiers" should allow young scientists to publish their research results using all kinds of inorganic biomaterials. On the other hand, fundamental discussion and analysis of the findings should be encouraged and conclusions about possible applications in the field of medicine and dentistry should be drawn.




Green Biocomposites for Biomedical Engineering


Book Description

Green Biocomposites for Biomedical Engineering: Design, Properties, and Applications combines emergent research outcomes with fundamental theoretical concepts relevant to processing, properties and applications of advanced green composites in the field of biomedical engineering. The book outlines the design elements and characterization of biocomposites, highlighting each class of biocomposite separately. A broad range of biomedical applications for biocomposites is then covered, with a final section discussing the ethics and safety regulations associated with manufacturing and the use of biocomposites. With contributions from eminent editors and recognized authors around the world, this book is a vital reference for researchers in biomedical engineering, materials science and environmental science, both in industry and academia. - Provides comprehensive information regarding current advances in the interdisciplinary field of eco-friendly green composite materials for biomedical applications - Offers coverage of state-of-the-art physics-based advanced models used in composites - Lists a broad range of characterization techniques and biomedical applications




Bioceramics: For Materials Science and Engineering


Book Description

Bioceramics: For Materials Science and Engineering provides a great working knowledge on the field of biomaterials, including the interaction of biomaterials with their biological surroundings. The book discussees the biomedical applications of materials, the standpoint of biomedical professionals, and a real-world assessment of the academic research in the field. It addresses the types of bioceramics currently available, their structure and fundamental properties, and their most important applications. Users will find this to be the only book to cover all these aspects. - Acts as the only introductory reference on bioceramics that covers both the theoretical basics and advanced applications - Includes an overview of the key applications of bioceramics in orthopedics, dentistry and tissue engineering - Uses case studies to build understanding and enable innovation




Bioengineered Nanomaterials


Book Description

Many varieties of new, complex diseases are constantly being discovered, which leaves scientists with little choice but to embrace innovative methods for controlling the invasion of life-threatening problems. The use of nanotechnology has given scientists an opportunity to create nanomaterials that could help medical professionals in diagnosing and treating problems quickly and effectively. Bioengineered Nanomaterials presents in-depth information on bioengineered nanomaterials currently being developed in leading research laboratories around the world. In particular, the book focuses on nanomaterials for biomedical applications. This collection brings together novel methodologies and strategies adopted in the research and development of bioengineered nanomaterials and technology. Renowned international researchers discuss topics including: Nanoemulsions as a vaccine adjuvant Bioceramic nanomaterials in medical applications Natural and synthetic nanoporous membranes for cell encapsulation therapy Inorganic nanoparticle materials for the controlled release of drugs Nanomedicine in brain tumor treatment Nanoparticles for the treatment of solid tumors and metastasis Near-infrared-resonant gold nanoshells and carbon nanotubes in tumor imaging Toxicity testing and bioapplications of silver nanoparticles Innovative approaches to improve bioactive properties and molecular signaling in cells to stimulate bone repair The book is written for readers from diverse backgrounds across chemistry, physics, materials science and engineering, medical science, pharmacy, biotechnology, and biomedical engineering. It offers a comprehensive view of cutting-edge research on nanomaterials of biotechnological importance.