Bio-Inspired Computational Intelligence and Applications


Book Description

This book is part of a two-volume work that constitutes the refereed proceedings of the International Conference on Life System Modeling and Simulation, LSMS 2007, held in Shanghai, China, September 2007. Coverage includes advanced neural network theory, advanced evolutionary computing theory, ant colonies and particle swarm optimization, intelligent modeling, monitoring, and control of complex nonlinear systems, as well as biomedical signal processing, imaging and visualization.




Bio-Inspired Technologies for the Hardware of Adaptive Systems


Book Description

Evolvable Hardware (EHW) has emerged as a sub-domain of artificial evolution represented by a design methodology (consortium of methods) involving the application of Evolutionary Algorithms (EA) to the synthesis of digital and analogue electronic circuits and systems. Nevertheless, the most benefit for the society and indeed most revolutionizing application of EA is its hardware implementation leading to the EHW. These new EA based methodologies led to a new type of machines that is evolved to attain a desired behaviour, which means they have a behavioural computational intelligence. EHW is a special case of the adaptive hardware, namely being strongly related to the Adaptive Systems (AS) and the Adaptive Hardware (AH). The book presents a careful selection of the field that very well reflects the breadth of this high technology and its terminology and applications in context of the AS/AH. The harmonious symbiosis of the engineering approach and the accurate scientific methodology features the aspects of highly relevant and practical design principles governing the development of EHW and its connections with AS/AH. This book is both attractive and useful for everybody interested in the design and analysis of EHW in context of AS/AH and implementation of real time adaptive hardware hybrid intelligent systems.




Nature-Inspired Computation in Engineering


Book Description

This timely review book summarizes the state-of-the-art developments in nature-inspired optimization algorithms and their applications in engineering. Algorithms and topics include the overview and history of nature-inspired algorithms, discrete firefly algorithm, discrete cuckoo search, plant propagation algorithm, parameter-free bat algorithm, gravitational search, biogeography-based algorithm, differential evolution, particle swarm optimization and others. Applications include vehicle routing, swarming robots, discrete and combinatorial optimization, clustering of wireless sensor networks, cell formation, economic load dispatch, metamodeling, surrogated-assisted cooperative co-evolution, data fitting and reverse engineering as well as other case studies in engineering. This book will be an ideal reference for researchers, lecturers, graduates and engineers who are interested in nature-inspired computation, artificial intelligence and computational intelligence. It can also serve as a reference for relevant courses in computer science, artificial intelligence and machine learning, natural computation, engineering optimization and data mining.




Bio-Inspired Computation in Telecommunications


Book Description

Bio-inspired computation, especially those based on swarm intelligence, has become increasingly popular in the last decade. Bio-Inspired Computation in Telecommunications reviews the latest developments in bio-inspired computation from both theory and application as they relate to telecommunications and image processing, providing a complete resource that analyzes and discusses the latest and future trends in research directions. Written by recognized experts, this is a must-have guide for researchers, telecommunication engineers, computer scientists and PhD students.




Adaptation in Natural and Artificial Systems


Book Description

Genetic algorithms are playing an increasingly important role in studies of complex adaptive systems, ranging from adaptive agents in economic theory to the use of machine learning techniques in the design of complex devices such as aircraft turbines and integrated circuits. Adaptation in Natural and Artificial Systems is the book that initiated this field of study, presenting the theoretical foundations and exploring applications. In its most familiar form, adaptation is a biological process, whereby organisms evolve by rearranging genetic material to survive in environments confronting them. In this now classic work, Holland presents a mathematical model that allows for the nonlinearity of such complex interactions. He demonstrates the model's universality by applying it to economics, physiological psychology, game theory, and artificial intelligence and then outlines the way in which this approach modifies the traditional views of mathematical genetics. Initially applying his concepts to simply defined artificial systems with limited numbers of parameters, Holland goes on to explore their use in the study of a wide range of complex, naturally occuring processes, concentrating on systems having multiple factors that interact in nonlinear ways. Along the way he accounts for major effects of coadaptation and coevolution: the emergence of building blocks, or schemata, that are recombined and passed on to succeeding generations to provide, innovations and improvements.




Bio-Inspired Computing and Networking


Book Description

Seeking new methods to satisfy increasing communication demands, researchers continue to find inspiration from the complex systems found in nature. From ant-inspired allocation to a swarm algorithm derived from honeybees, Bio-Inspired Computing and Networking explains how the study of biological systems can significantly improve computing, networki




Bio-Inspired Computing and Communication


Book Description

This volume contains the papers from BIOWIRE 2007, the first in a series of wo- shops on the bio-inspired design of networks, and additional papers contributed from the research area of bio-inspired computing and communication. The workshop took place at the University of Cambridge during April 2–5, 2007 with sponsorship from the US/UK International Technology Alliance in Network and Information Sciences. Its objective was to present, discuss and explore the recent developments in the field of bio-inspired design of networks, with particular regard to wireless networks and the self-organizing properties of biological networks. The workshop was organized by Jon Crowcroft (University of Cambridge), Don Towsley (University of Massachusetts), Dinesh Verma (IBM T. J. Watson Research Center), Vasilis Pappas (IBM T. J. Watson Research Center), Ananthram Swami (ARL), Tom McCutcheon (DSTL) and Pietro Liò (University of Cambridge). The program for BIOWIRE 2007 included 54 speakers covering a diverse range of topics, categorized as follows: 1. Self-organized communication networks in insects 2. Neuronal communications 3. Bio-computing 4. Epidemiology 5. Network theory 6. Wireless and sensorial networks 7. Brain: models of sensorial integration The BIOWIRE workshop focuses on achieving a common ground for knowledge sharing among scientists with expertise in investigating the application domain (e. g. , biological, wireless, data communication and transportation networks) and scientists with relevant expertise in the methodology domain (e. g. , mathematics and statistical physics of networks).




Advances in Bio-inspired Computing for Combinatorial Optimization Problems


Book Description

"Advances in Bio-inspired Combinatorial Optimization Problems" illustrates several recent bio-inspired efficient algorithms for solving NP-hard problems. Theoretical bio-inspired concepts and models, in particular for agents, ants and virtual robots are described. Large-scale optimization problems, for example: the Generalized Traveling Salesman Problem and the Railway Traveling Salesman Problem, are solved and their results are discussed. Some of the main concepts and models described in this book are: inner rule to guide ant search - a recent model in ant optimization, heterogeneous sensitive ants; virtual sensitive robots; ant-based techniques for static and dynamic routing problems; stigmergic collaborative agents and learning sensitive agents. This monograph is useful for researchers, students and all people interested in the recent natural computing frameworks. The reader is presumed to have knowledge of combinatorial optimization, graph theory, algorithms and programming. The book should furthermore allow readers to acquire ideas, concepts and models to use and develop new software for solving complex real-life problems.




Bio-Inspired Models of Network, Information, and Computing Systems


Book Description

This book constitutes the thoroughly refereed post-conference proceedings of the 6th International Conference on Bio-Inspired Models of Network, Information, and Computing Systems (Bionetics). The event took place in the city of York, UK, in December 2011. Bionetics main objective is to bring bio-inspired paradigms into computer engineering and networking, and to enhance the fruitful interactions between these fields and biology. The papers of the conference were accepted in 2 categories: full papers and work-in progress. Full papers describe significant advances in the Bionetics field, while work-in-progress papers present an opportunity to discuss breaking research which is currently being evaluated. The topics are ranging from robotic coordination to attack detection in peer-to-peer networks, biological mechanisms including evolution, flocking and artificial immune systems, and nano-scale communication and networking.




Recent Developments in Biologically Inspired Computing


Book Description

Recent Developments in Biologically Inspired Computing is necessary reading for undergraduate and graduate students, and researchers interested in knowing the most recent advances in problem solving techniques inspired by nature. This book covers the most relevant areas in computational intelligence, including evolutionary algorithms, artificial neural networks, artificial immune systems and swarm systems. It also brings together novel and philosophical trends in the exciting fields of artificial life and robotics. This book has the advantage of covering a large number of computational approaches, presenting the state-of-the-art before entering into the details of specific extensions and new developments. Pseudocodes, flow charts and examples of applications are provided so as to help newcomers and mature researchers to get the point of the new approaches presented.