Bioactive Materials for Bone Regeneration


Book Description

Bioactive Materials for Bone Regeneration summarizes research advances on the topic, including sections on the characteristics of biomaterial-induced microenvironments, interactions of bioactive materials with stem cells and tissues, and the immunomodulatory microenvironment induced by biomaterials and its effects on osteogenesis. As the regeneration of large-size bone tissue defects represents a significant clinical challenge, this book demonstrates how new biomaterials with specific chemical and physical characteristics may interact with the host and create a unique micro-environment that actively facilitates stem cell differentiation along a specific lineage, thus stimulating tissue regeneration. Provides readers with the latest research developments in the fabrication techniques of bioactive materials for tissue regeneration and tissue engineering applications Presents the latest research advancements on how bioactive materials interact with the host and induce micro-environments for stem cell differentiation, immunomodulation and tissue regeneration Covers the methods, strategies, principle and mechanisms on constructing beneficial biomaterial microenvironments




Bone Repair Biomaterials


Book Description

Bone Repair Biomaterials: Regeneration and Clinical Applications, Second Edition, provides comprehensive reviews on materials science, engineering principles and recent advances. Sections review the fundamentals of bone repair and regeneration, discuss the science and properties of biomaterials used for bone repair, including metals, ceramics, polymers and composites, and discuss clinical applications and considerations, with chapters on such topics as orthopedic surgery, tissue engineering, implant retrieval, and ethics of bone repair biomaterials. This second edition includes more chapters on relevant biomaterials and a greatly expanded section on clinical applications, including bone repair applications in dental surgery, spinal surgery, and maxilo-facial and skull surgery. In addition, the book features coverage of long-term performance and failure of orthopedic devices. It will be an invaluable resource for researchers, scientists and clinicians concerned with the repair and restoration of bone. Provides a comprehensive review of the materials science, engineering principles and recent advances in this important area Presents new chapters on Surface coating of titanium, using bone repair materials in dental, spinal and maxilo-facial and skull surgery, and advanced manufacturing/3D printing Reviews the fundamentals of bone repair and regeneration, addressing social, economic and clinical challenges Examines the properties of biomaterials used for bone repair, with specific chapters assessing metals, ceramics, polymers and composites




Advanced Bioactive Inorganic Materials for Bone Regeneration and Drug Delivery


Book Description

Bioceramics play an important role in repairing and regenerating defective or damaged bone. Annually, more than 500,000 bone graft procedures are performed in the United States and approximately 2.2 million are conducted worldwide. Advanced Bioactive Inorganic Materials for Bone Regeneration and Drug Delivery reviews the latest advances in the field of bioceramics. The book summarizes innovative concepts, bioceramic design, and methods for material synthesis and drug delivery. Offering guidance for biomedical engineering researchers and material scientists, the book explores: Novel mesoporous bioactive glasses and silicate-based ceramics for bone regeneration and drug delivery Bioactive silicate ceramics, including their mechanical properties, interaction with bone-forming cells, and in vivo osteogenesis and angiogenesis Silica nanospheres with a core-shell structure and their specific properties for controllable drug delivery The 3D-printing technique to prepare advanced bioceramic scaffolds for bone tissue engineering applications—including the preparation, mechanical strength, and biological properties of 3D-printed porous scaffolds of calcium phosphate cement and silicate bioceramics Biomimetic preparation and controllable crystal growth and biomineralization of bioceramics Inorganic and organic composite materials and their unique biological, electrical, and mechanical properties that enable the design of excellent bone regeneration and gene delivery systems A comprehensive survey of the research progress of bioceramics and their applications in bone repair and regeneration, this volume is designed to enhance study and career development for those in this field and to facilitate further research and opportunities for new solutions.




Bio-Implant Interface


Book Description

Achieving good clinical outcomes with implanted biomaterials depends upon achieving optimal function, both mechanical and biological, which in turn depends upon integrating advances realized in biological science, material science, and tissue engineering. As these advances push back the frontiers of biomaterial medicine , the control and patterning




The Bone-biomaterial Interface


Book Description

Based on the proceedings of the Bone-Biomaterial Interface Workshop held in Toronto, Canada, December 1990, addresses the questions which have arisen during this period of evolution from inert to active materials in orthopedic, dental, and maxillofacial implants with specific reference to the bone-biomaterial interface. The seven parts of the volume reflect the seven sessions of the workshop, dealing with materials issues, protein adsorption, cell and tissue reactions, mechanical influences on interfacial biology, retrieval analysis, and the industrial context. Annotation copyrighted by Book News, Inc., Portland, OR




Handbook of Bioceramics and Biocomposites


Book Description

This handbook describes several current trends in the development of bioceramics and biocomposites for clinical use in the repair, remodelling, and regeneration of bone tissue. Comprehensive coverage of these materials allows fundamental aspects of the science and engineering to be seen in close relation to the clinical performance of dental and orthopaedic implants. Bioceramics and biocomposites appear to be the most dynamic area of materials development for both tissue engineering and implantable medical devices. Almost all medical specialties will continue to benefit from these developments, but especially dentistry and orthopaedics. In this Handbook, leading researchers describe the use of bionanomaterials to create new functionalities when interfaced with biological molecules or structures. Also described are technologies for bioceramics and biocomposites processing in order to fabricate medical devices for clinical use. Another important section of the book is dedicated to tissue regeneration with development of new matrices. A targeted or personalized treatment device reduces drug consumption and treatment expenses, resulting in benefits to the patient and cost reductions for public health systems. This authoritative reference on the state-of-the-art in the development and use of bioceramics and biocomposites can also serve as the basis of instructional course lectures for audiences ranging from advanced undergraduate students to post-graduates in materials science and engineering and biomedical engineering.




Bone Tissue Engineering


Book Description

Focusing on bone biology, Bone Tissue Engineering integrates basic sciences with tissue engineering. It includes contributions from world-renowned researchers and clinicians who discuss key topics such as different models and approaches to bone tissue engineering, as well as exciting clinical applications for patients. Divided into four sections, t




Inorganic Biomaterials


Book Description

Inorganic biomaterials include materials for e.g. dental restorations, biocompatible materials for orthopedic appliances and bioactive materials. However, inorganic biomaterials are also developed for use in tissue regeneration, e.g. wound healing. These products either consist of crystalline phases, such as Al2O3 or ZrO2, which makes them suitable for use in hip bone replacement or they are composed of tricalcium phosphate and used as resorbable biomaterials. Or, they contain glassy phases, such as BIOGLASS®, and are employed as bioactive biomaterials to bond to living bone. Inorganic biomaterials are also used to develop inorganic – organic composites which are suitable for use as bioactive products or to produce dental filling materials. In general, the development of composites is state of the art. However, it is also a future technology. Biomaterials for dental restorations consist of glassy or crystalline phases. Glass-ceramics represent a special group of inorganic biomaterials for dental restorations. Glass-ceramics are composed of at least one inorganic glassy phase and at least one crystalline phase. These products demonstrate a combination of properties, which include excellent aesthetics and the ability to mimic the optical properties of natural teeth, as well as high strength and toughness. They can be processed using special processing procedures, e.g. machining, moulding and sintering, to fabricate high quality products. Sintered oxide ceramics, such as Al2O3 or ZrO2, are also used for the fabrication of dental restorations. These products can be veneered with other biomaterials, or they can be polished to achieve the best possible surface quality. The manuscripts dealing with inorganic biomaterials should focus on the development of the products, especially on their chemical nature, the phase formation processes and all the details related to their processing. Very important are the mechanisms of phase formation. The reader of the manuscript should understand all of these reactions in detail. As far as application is concerned, it is important to describe the main properties of the developed products based on the valid standards, e.g. the ISO standards. The papers published should show that the products comply with these standards. It is very important to understand the relationship between biomass and biomaterials. This will help young scientists to follow the development of biomaterials with new, unexpected properties. He manuscripts published in "Frontiers" should also focus on the application of the biomaterials. Every manuscript should show the most important application of the material presented. There are different journals that deal with specific product categories, eg "Dental Materials". However, "Frontiers" should allow young scientists to publish their research results using all kinds of inorganic biomaterials. On the other hand, fundamental discussion and analysis of the findings should be encouraged and conclusions about possible applications in the field of medicine and dentistry should be drawn.




Regenerative Medicine and Plastic Surgery


Book Description

This book discusses the current research concepts and the emerging technologies in the field of stem cells and tissue engineering. It is the first authoritative reference documenting all the ways that plastic surgical practice and regenerative medicine science overlap or provide a road map for the future of both specialties. The Editors have provided a valuable service by gathering in one place the leading voices in these two fields in clear and concise manner. Divided into five parts, the book opens with a description of the elements of regenerative medicine including definitions, basic principles of soft and bone tissue regeneration, biomaterials and scaffolds. Current research concepts are explored in the second part of this book, for example mechanotransduction and the utility of extracellular vesicles. In the third part, the editors present the emerging technologies and highlight the novel perspectives on bionic reconstruction and biomimetics in surgery and regenerative medicine. Part four deals with translational aspects including practical information on moving scientific findings from bench to bedside. The final part then describes in detail applications in clinical plastic surgery. Written by leading experts this book is an invaluable resource for researchers, students, beginners and experienced clinicians in a range of specialties. "In your hands is a comprehensive encyclopedia of two rapidly converging fields. Drs Duscher and Shiffman have done an outstanding job of highlighting the interdependent relationship between plastic surgery and regenerative medicine. Ultimately, this is to the benefit of both fields." - Geoffrey C. Gurtner, MD, FACS Johnson and Johnson Distinguished Professor of Surgery Professor (by courtesy) of Bioengineering and Materials Science Inaugural Vice Chairman of Surgery for Innovation Stanford University School of Medicine