Bioactive Polymeric Systems


Book Description

The vast array of libraries in the world bear mute witness to the truth of the 3000-year-old observation of King Solomon who stated " ... of making many books there is no end, and much study is a weariness of the flesh." Yet books are an essential written record of our lives and the progress of science and humanity. Here is another book to add to this huge collection, but, hopefully, not just another collection of pages, but rather a book with a specific purpose to aid in alleviating the "weariness of the flesh" that could arise from much studying of other journals and books in order to obtain the basic information contained herein. This book is about polymeric materials and biological activity, as the title notes. Polymeric materials, in the broad view taken here, would include not only synthetic polymers (e.g., polyethylene, polyvinyl chloride, polyesters, polyamides, etc.), but also the natural macromolecules (e.g., proteins, nucleic acids, polysaccharides) which compose natural tissues in humans, animals and plants. In the broad sense used here, biological activity is any type of such action whether it be in medication, pest control, plant-growth regu lation, and so on. In short, this book attempts to consider, briefly, the use of any type of polymeric material system with essentially any kind of biological activity.




Biological Activities of Polymers


Book Description

Based on a symposium sponsored by the Division of Organic Coatings and Plastics Chemistry at the 181st meeting of the American Chemical Society, Atlanta, Ga., Mar. 30-31, 1981.




Applied Bioactive Polymeric Materials


Book Description

The biological and biomedical applications of polymeric materials have increased greatly in the past few years. This book will detail some, but not all, of these recent developments. There would not be enough space in this book to cover, even lightly, all of the major advances that have occurred. Some earlier books and summaries are available by two of this book's Editors (Gebelein & Carraher) and these should be consul ted for additional information. The books are: "Bioactive Polymeric Systems" (Plenum, 1985); "Polymeric Materials In Medication" (Plenum, 1985); "Biological Acti vi ties of Polymers" (American Chemical Society, 1982). Of these three, "Bioacti ve Polymeric Systems" should be the most useful to a person who is new to this field because it only contains review articles written at an introductory level. The present book primarily consists of recent research results and applications, with only a few review or summary articles. Bioactive polymeric materials have existed from the creation of life itself. Many firmly believe that life could not even exist unless poly meric materials are used to form the basic building blocks. Although this assumption can not be rigorously proven, it is a fact that most, if not all, of the major biochemical pathways involve polymeric species, such as the proteins (including enzymes), polysaccharides and nucleic acids.




Designing Bioactive Polymeric Materials For Restorative Dentistry


Book Description

Restorative biomaterials in dentistry are designed to restore the shape and function of teeth. Their applicability is related to restorative procedures such as dental restorations, dentures, dental implants, and endodontic materials. Designing Bioactive Polymeric Materials for Restorative Dentistry reviews the current state of the art for restorative biomaterials and discusses the near-future trends in this field. The book examines the biomaterials utilized in restorative dental applications (bonding, composites, cements, and ceramics) and assesses the design for these materials and the role of nanotechnology. All of the contributors are active clinical dentists and researchers in this field. FEATURES Overviews the major ongoing research efforts on developing bioactive bonding systems and composites in dental biomaterials Focuses on emerging trends in restorative dental biomaterials Incorporates evidence-based data on new restorative dental materials throughout the book Features extensive references at the end of each chapter to enhance further study Mary Anne S. Melo, DDS, MSc, PhD FADM, is an Associate Professor and Division Director of Operative Dentistry at the School of Dentistry, University of Maryland, Baltimore, Maryland.




Biomedical Polymers


Book Description

A review of the latest research on biomedical polymers, this book discusses natural, synthetic, biodegradable and non bio-degradable polymers and their applications. Chapters discuss polymeric scaffolds for tissue engineering and drug delivery systems, the use of polymers in cell encapsulation, their role as replacement materials for heart valves and arteries, and their applications in joint replacement. The book also discusses the use of polymers in biosensor applications. Edited by an expert team of reasearchers and containing contributions from pioneers throughout the field, the book is an essential reference for scientists and all those developing and using this important group of biomaterials.




Controlled Release of Bioactive Materials


Book Description

Controlled Release of Bioactive Materials is a collection papers that deal with the study of controlled release applications in drugs and other pharmacological products and processes. The text covers topics such as the theory and practice of controlled drug delivery from bioerodible polymers, biodegradable drug delivery systems from aliphatic polyesters, and the applications of osmotic drug delivery. Also covered are topics such as the application of polymers for the sustained release of macromolecules, controlled transdermal delivery, and the use of hydrogel devices for the controlled release of steroid hormones. The book is recommended for pharmacologists and doctors who would like to know more about advancements in the field of controlled release applications and its uses in healthcare, especially in pharmacology.




Biotechnology and Bioactive Polymers


Book Description

Some have predicted that the coming several decades will be the decades of "biotechnology," wherein cancer, birth defects, life span increases, cosmetics, biodegradation, oil spills and exploration, solid waste disposal, and almost every aspect of our material life will be affected by this new area of science. There will also be an extension of emphasis on giant molecules: DNA, enzymes, polysaccharides, lignins, proteins, hemoglobin, and many others. Biotechnology has been defined in various ways. In one sense, this field is older than human history and references to the human use of biotechnology-derived materials can be found in the oldest human writings, such as the Bible. In this book, biotechnology refers to the direct usage of naturally occurring materials or their uses as a feedstock, including the associated biological activities and applications of these materials. Bioactive polymers, on the other hand, are polymers which exert some type of activity on living organisms. These polymers are used in agriculture, controlled release systems, medicine and many other areas. The papers in this book describe polymers which essentially combine features of biotechnology and bioactivity.




Polymeric Biomaterials: Structure and function


Book Description

The third edition of a bestseller, this comprehensive reference presents the latest polymer developments and most up-to-date applications of polymeric biomaterials in medicine. Expanded into two volumes, the first volume covers the structure and properties of synthetic and natural polymers as well as bioresorbable hybrid membranes, drug delivery systems, cell bioassay systems, and electrospinning for regenerative medicine. This substantially larger resource includes state-of-the-art research and successful breakthroughs in applications that have occurred in the last ten years.




Polymeric Biomaterials


Book Description

Biomaterials have had a major impact on the practice of contemporary medicine and patient care. Growing into a major interdisciplinary effort involving chemists, biologists, engineers, and physicians, biomaterials development has enabled the creation of high-quality devices, implants, and drug carriers with greater biocompatibility and biofunctiona




Bone Tissue Engineering


Book Description

Focusing on bone biology, Bone Tissue Engineering integrates basic sciences with tissue engineering. It includes contributions from world-renowned researchers and clinicians who discuss key topics such as different models and approaches to bone tissue engineering, as well as exciting clinical applications for patients. Divided into four sections, t