Bioanalytical Chemistry


Book Description

A timely, accessible survey of the multidisciplinary field of bioanalytical chemistry Provides an all in one approach for both beginners and experts, from a broad range of backgrounds, covering introductions, theory, advanced concepts and diverse applications for each method Each chapter progresses from basic concepts to applications involving real samples Includes three new chapters on Biomimetic Materials, Lab-on-Chip, and Analytical Methods Contains end-of-chapter problems and an appendix with selected answers




Bioanalytical Chemistry (Second Edition)


Book Description

Interdisciplinary knowledge is becoming increasingly important to the modern scientist. This invaluable textbook covers bioanalytical chemistry (mainly the analysis of proteins and DNA) and explains everything for the non-biologist. Electrophoresis, mass spectrometry, biosensors, bioassays, DNA and protein sequencing are not necessarily all included in conventional analytical chemistry textbooks. The book describes the basic principles and the applications of instrumental and molecular methods. It is particularly useful to chemistry and engineering students who already have some basic knowledge about analytical chemistry. This revised second edition contains a new chapter on optical spectroscopy, and updated methods and new references throughout.Andreas Manz received the 2015 Inventor Award for 'Lifetime Achievement' from the European Patent Office.Petra S Dittrich was presented with the Heinrich-Emanuel-Merck Award 2015 at EuroAnalysis2015 Conference.




Understanding Bioanalytical Chemistry


Book Description

"The title captures the ethos and content precisely. It brings basic chemistry into real life with examples that illustrate how chemical principals are inherent to bioanalytical procedures, making them accessible to readers with a background in life sciences." –Microbiology Today, July 2009 “... a good overview of the basic strategies to tackle the complexity of analysis in biological environments and provides some illustrative examples for a better understanding of the theoretical concepts... provides a fundamental introduction to the tools adopted by life and health scientists in the evolving and exciting new age of “omics” specifically applied to the diagnosis, treatment, cure and prevention of disease...” –Analytical and Bioanalytical Chemistry, October 2009 Although chemistry is core to the life and health sciences, it is often viewed as a challenging subject. Conventional textbooks tend to present chemistry in a way that is not always easily accessible to students, particularly those coming from diverse educational backgrounds, who may not have formally studied chemistry before. This prompted the authors to write this particular textbook, taking a new, fresh and innovative approach to teaching and learning of chemistry, focusing on bioanalysis to set knowledge in context. This textbook is primarily targeted to undergraduate life and health science students, but may be a useful resource for practising scientists in a range of disciplines. In this textbook the authors have covered basic principles, terminology and core technologies, which include key modern experimental techniques and equipment used to analyse important biomolecules in diagnostic, industrial and research settings. Written by two authors with a wealth of experience in teaching, research and academic enterprise, this textbook represents an invaluable tool for students and instructors across the diverse range of biological and health science courses. Key Features: Innovative, stand alone teaching and learning resource to enhance delivery of undergraduate chemistry provision to life and health scientists. Develops student knowledge and understanding of core concepts with reference to relevant, real-life, examples. Clearly written and user-friendly, with numerous full colour illustrations, annotated images, diagrams and tables to enhance learning. Incorporates a modern approach to teaching and learning to motivate the reader and encourage student-centred learning. Dr Victor Gault has been named recipient of the Rising Star Award 2009 by the internationally acclaimed European Association for the Study of Diabetes (EASD).




Principles and Practice of Bioanalysis


Book Description

Principles and Practice of Bioanalysis provides a guide to the methods available and the techniques currently used in this field. It provides up to the minute information and guidance on the methods and strategy used in developing and running ultra-trace analyses for drugs, metabolites and other substances. The authors writes in an informal and didactic style, offering a logical path through the problems of small molecule (bio)analysis and enables readers to choose appropriate methods of analysis for their needs. Principles and Practice of Bioanalysis provides an overview of analytical methods for analytical scientists within the pharmaceutical industry, research and development, the agrochemical industry, and scientists in the health service, biology and biochemistry. It also gives postgraduate students a useful reference for their research methods.




Bioanalytics


Book Description

Analytical methods are the essential enabling tools of the modern biosciences. This book presents a comprehensive introduction into these analytical methods, including their physical and chemical backgrounds, as well as a discussion of the strengths and weakness of each method. It covers all major techniques for the determination and experimental analysis of biological macromolecules, including proteins, carbohydrates, lipids and nucleic acids. The presentation includes frequent cross-references in order to highlight the many connections between different techniques. The book provides a bird's eye view of the entire subject and enables the reader to select the most appropriate method for any given bioanalytical challenge. This makes the book a handy resource for students and researchers in setting up and evaluating experimental research. The depth of the analysis and the comprehensive nature of the coverage mean that there is also a great deal of new material, even for experienced experimentalists. The following techniques are covered in detail: - Purification and determination of proteins - Measuring enzymatic activity - Microcalorimetry - Immunoassays, affinity chromatography and other immunological methods - Cross-linking, cleavage, and chemical modification of proteins - Light microscopy, electron microscopy and atomic force microscopy - Chromatographic and electrophoretic techniques - Protein sequence and composition analysis - Mass spectrometry methods - Measuring protein-protein interactions - Biosensors - NMR and EPR of biomolecules - Electron microscopy and X-ray structure analysis - Carbohydrate and lipid analysis - Analysis of posttranslational modifications - Isolation and determination of nucleic acids - DNA hybridization techniques - Polymerase chain reaction techniques - Protein sequence and composition analysis - DNA sequence and epigenetic modification analysis - Analysis of protein-nucleic acid interactions - Analysis of sequence data - Proteomics, metabolomics, peptidomics and toponomics - Chemical biology




Tools and Trends in Bioanalytical Chemistry


Book Description

This textbook covers the main tools and techniques used in bioanalysis, provides an overview of their principles, and offers several examples of their application and future trends in diagnosis. Chapters from expert contributors explore the role of bioanalysis in different areas such as biochemistry, physiology, forensics, and clinical diagnosis, including topics from sampling/sample preparation, chemometrics in bioanalysis to the latest techniques used in the field. Particular attention is given to the recent advances in the application of mass spectrometry, NMR, electrochemical methods and separation techniques in bioanalysis. Readers will also find more about the application of microchip-based devices and analytical microarrays. This textbook will appeal to graduate/advanced undergraduate students in Chemistry, Biology, Biochemistry, Pharmacy, and Chemical Engineering. It is also a useful resource for researchers and professionals working in the fields of biomedicine and veterinary sciences, with clear explanations and examples of how the different bioanalytical devices are applied for clinical diagnosis.




Bioanalytical Chemistry


Book Description

Bioanalytical chemistry plays today a central role in various fields, from healthcare to food and environmental control. This book presents the main methodologies for analyzing biomacromolecules, with a focus on methods based on molecular recognition. The six chapters move from fundamentals to the most recent advances, achieved by a synergetic combination of bio and nanotechnologies. The need for rapid and reliable analytical tools able to perform a large number of quantitative analyses, not only in centralized laboratories and core facilities but also for point-of-care testing, has been dramatically stressed by the recent crisis caused by the COVID-19 pandemic. The aim of the authors is to provide graduate students and young researchers with the elements of interdisciplinary knowledge necessary not only to use the wide arsenal of bioanalytical tools available today but also to contribute to the development of even more effective devices and methods.




Introduction to Pharmaceutical Analytical Chemistry


Book Description

The definitive textbook on the chemical analysis of pharmaceutical drugs – fully revised and updated Introduction to Pharmaceutical Analytical Chemistry enables students to gain fundamental knowledge of the vital concepts, techniques and applications of the chemical analysis of pharmaceutical ingredients, final pharmaceutical products and drug substances in biological fluids. A unique emphasis on pharmaceutical laboratory practices, such as sample preparation and separation techniques, provides an efficient and practical educational framework for undergraduate studies in areas such as pharmaceutical sciences, analytical chemistry and forensic analysis. Suitable for foundational courses, this essential undergraduate text introduces the common analytical methods used in quantitative and qualitative chemical analysis of pharmaceuticals. This extensively revised second edition includes a new chapter on chemical analysis of biopharmaceuticals, which includes discussions on identification, purity testing and assay of peptide and protein-based formulations. Also new to this edition are improved colour illustrations and tables, a streamlined chapter structure and text revised for increased clarity and comprehension. Introduces the fundamental concepts of pharmaceutical analytical chemistry and statistics Presents a systematic investigation of pharmaceutical applications absent from other textbooks on the subject Examines various analytical techniques commonly used in pharmaceutical laboratories Provides practice problems, up-to-date practical examples and detailed illustrations Includes updated content aligned with the current European and United States Pharmacopeia regulations and guidelines Covering the analytical techniques and concepts necessary for pharmaceutical analytical chemistry, Introduction to Pharmaceutical Analytical Chemistry is ideally suited for students of chemical and pharmaceutical sciences as well as analytical chemists transitioning into the field of pharmaceutical analytical chemistry.




Principles of Chemical Sensors


Book Description

Do not learn the tricks of the trade, learn the trade I started teachinggraduate coursesin chemical sensors in early 1980s, ?rst as a o- quarter (30 h) class then as a semester course and also as several intensive, 4–5-day courses. Later I organized my lecture notes into the ?rst edition of this book, which was published by Plenum in 1989 under the title Principles of Chemical Sensors. I started working on the second edition in 2006. The new edition of Principles of Chemical Sensors is a teaching book, not a textbook. Let me explain the difference. Textbooks usually cover some more or less narrow subject in maximum depth. Such an approach is not possible here. The subject of chemical sensors is much too broad, spanning many aspects of physical and analytical chemistry, biochemistry, materials science, solid-state physics, optics, device fabrication, electrical engine- ing, statistical analysis, and so on. The challengefor me has been to present uniform logical coverage of such a large area. In spite of its relatively shallow depth, it is intended as a graduate course. At its present state the amount of material is more thancan be coveredin a one-semestercourse (45h). Two one-quartercourseswould be more appropriate. Because of the breadth of the material, the sensor course has a somewhat unexpected but, it is hoped, bene?cial effect.




Advanced Excel for Scientific Data Analysis


Book Description

This guide to Excel focuses on three areas--least squares, Fourier transformation, and digital simulation. It illustrates the techniques with detailed examples, many drawn from the scientific literature. It also includes and describes a number of sample macros and functions to facilitate common data analysis tasks. De Levie is affiliated with Bowdoin College. Annotation : 2004 Book News, Inc., Portland, OR (booknews.com).