Biocatalytic Process Optimization


Book Description

Biocatalysis is very appealing to the industry because it allows, in principle, the synthesis of products not accessible by chemical synthesis. Enzymes are very effective, as are precise biocatalysts, as they are enantioselective, with mild reaction conditions and green chemistry. Biocatalysis is currently widely used in the pharmaceutical industry, food industry, cosmetic industry, and textile industry. This includes enzyme production, biocatalytic process development, biotransformation, enzyme engineering, immobilization, the synthesis of fine chemicals and the recycling of biocatalysts. One of the most challenging problems in biocatalysis applications is process optimization. This Special Issue shows that an optimized biocatalysis process can provide an environmentally friendly, clean, highly efficient, low cost, and renewable process for the synthesis and production of valuable products. With further development and improvements, more biocatalysis processes may be applied in the future.




Directed Evolution of Selective Enzymes


Book Description

Authored by one of the world's leading organic chemists, this authoritative reference provides an overview of basic strategies in directed evolution and introduces common gene mutagenesis, screening and selection methods. Throughout the text, emphasis is placed on methodology development to maximize efficiency, reliability and speed of the experiments and to provide guidelines for efficient protein engineering. Professor Reetz highlights the application of directed evolution experiments to address limitations in the field of enzyme selectivity, substrate scope, activity and robustness. He critically reviews recent developments and case studies, takes a look at future applications in the field of organic synthesis, and concludes with lessons learned from previous experiments.




Enzyme Biocatalysis


Book Description

This book was written with the purpose of providing a sound basis for the design of enzymatic reactions based on kinetic principles, but also to give an updated vision of the potentials and limitations of biocatalysis, especially with respect to recent app- cations in processes of organic synthesis. The ?rst ?ve chapters are structured in the form of a textbook, going from the basic principles of enzyme structure and fu- tion to reactor design for homogeneous systems with soluble enzymes and hete- geneous systems with immobilized enzymes. The last chapter of the book is divided into six sections that represent illustrative case studies of biocatalytic processes of industrial relevance or potential, written by experts in the respective ?elds. We sincerely hope that this book will represent an element in the toolbox of gr- uate students in applied biology and chemical and biochemical engineering and also of undergraduate students with formal training in organic chemistry, biochemistry, thermodynamics and chemical reaction kinetics. Beyond that, the book pretends also to illustrate the potential of biocatalytic processes with case studies in the ?eld of organic synthesis, which we hope will be of interest for the academia and prof- sionals involved in R&D&I. If some of our young readers are encouraged to engage or persevere in their work in biocatalysis this will certainly be our more precious reward.




Biocatalysis


Book Description

The book covers the fundamentals of the field of biocatalysis that are not treated in such detail (or even not at all) in existing biocatalysis books or biochemistry textbooks. It of course does not substitute existing biochemistry textbooks but will serve a suitable supplement as it discusses biochemical fundamentals in connection with the respective topics.With focus on the interdisciplinary nature of biocatalysis, the book contains many aspects of fundamental organic chemistry and some of inorganic chemistry as well, which should make it interesting not only for biochemistry but also for chemistry students. An important theme being emphasized in the book is that applied biocatalysis is one of the main prerequisites for a sustainable development.The topics covered ranges from basic enzyme chemistry (biosynthesis, structure, properties, interaction forces, kinetics) to a detailed description of catalytic mechanisms. It covers the fundamentals of the different enzyme classes together with their applications in native and in immobilized state or in the form of whole cells in aqueous as well as non-conventional media. Topics such as catalytic antibodies, nucleic acid catalysts, non-ribosomal peptide synthesis, evolutionary methods, and the design of cells are also included.




Industrial Biocatalysis


Book Description

Biocatalysis has become an essential tool in the chemical industry and is the core of industrial biotechnology, also known as white biotechnology, making use of biocatalysts in terms of enzymes or whole cells in chemical processes as an alternative to chemical catalysts. This shift can be seen in the many areas of daily life where biocatalysts-with




Biocatalysis


Book Description

Implementing biocatalytic strategies in an industrial setting at a commercial scale is a challenging task, necessitating a balance between industrial need against economic viability. With invited contributions from small and large-scale chemical and pharmaceutical companies, this book bridges the gap between academia and industry. Contributors discuss current processes, types of biocatalysts and improvements, industrial motivation and key aspects to economically succeed. With its focus on industry related issues, this book will be a useful tool for future research by both practitioners and academics.




Biocatalysis for Practitioners


Book Description

This reference book originates from the interdisciplinary research cooperation between academia and industry. In three distinct parts, latest results from basic research on stable enzymes are explained and brought into context with possible industrial applications. Downstream processing technology as well as biocatalytic and biotechnological production processes from global players display the enormous potential of biocatalysts. Application of "extreme" reaction conditions (i.e. unconventional, such as high temperature, pressure, and pH value) - biocatalysts are normally used within a well defined process window - leads to novel synthetic effects. Both novel enzyme systems and the synthetic routes in which they can be applied are made accessible to the reader. In addition, the complementary innovative process technology under unconventional conditions is highlighted by latest examples from biotech industry.




Biocatalysis for Green Chemistry and Chemical Process Development


Book Description

This book describes recent progress in enzyme-driven green syntheses of industrially important molecules. The first three introductory chapters overview recent technological advances in enzymes and cell-based transformations, and green chemistry metrics for synthetic efficiency. The remaining chapters are directed to case studies in biotechnological production of pharmaceuticals (small molecules, natural products and biologics), flavors, fragrance and cosmetics, fine chemicals, value-added chemicals from glucose and biomass, and polymeric materials. The book is aimed to facilitate the industrial applications of this powerful and emerging green technology, and catalyze the advancement of the technology itself.







Modification of Polymers


Book Description

The sheer volume of topics which could have been included under our general title prompted us to make some rather arbitrary decisions about content. Modification by irradiation is not included because the activity in this area is being treated elsewhere. We have chosen to emphasize chemical routes to modification and have striven to pre sent as balanced a representation of current activity as time and page count permit. Industrial applications, both real and potential, are included. Where appropriate, we have encouraged the contributors to include review material to help provide the reader with adequate context. The initial chapter is a review from a historical perspective of polymer modification and contains an extensive bibliography. The remainder of the book is divided into four general areas: Reactions and Preparation of Copolymers Reactions and Preparation of Block and Graft Copolymers Modification Through Condensation Reactions Applications The chemical modification of homopolymers such as polyvinylchlo ride, polyethylene, poly(chloroalkylene sulfides), polysulfones, poly chloromethylstyrene, polyisobutylene, polysodium acrylate, polyvinyl alcohol, polyvinyl chloroformate, sulfonated polystyrene; block and graft copolymers such as poly(styrene-block-ethylene-co-butylene block-styrene), poly(I,4-polybutadiene-block ethylene oxide), star chlorine-telechelic polyisobutylene, poly(isobutylene-co-2,3-dimethyl- 1,3-butadiene), poly(styrene-co-N-butylmethacrylate); cellulose, dex tran and inulin, is described.