Advances in Calcium Phosphate Biomaterials


Book Description

Advances in Calcium Phosphate Biomaterials presents a comprehensive, state-of-the-art review of the latest advances in developing calcium phosphate biomaterials and their applications in medicine. It covers the fundamental structures, synthesis methods, characterization methods, and the physical and chemical properties of calcium phosphate biomaterials, as well as the synthesis and properties of calcium phosphate-based biomaterials in regenerative medicine and their clinical applications. The book brings together these new concepts, mechanisms and methods in contributions by both young and “veteran” academics, clinicians, and researchers to forward the knowledge and expertise on calcium phosphate and related materials. Accordingly, the book not only covers the fundamentals but also open new avenues for meeting future challenges in research and clinical applications. Besim Ben-Nissan is a Professor of Chemistry and Forensic Science at the University of Technology, Sydney, Australia




Bioceramics and their Clinical Applications


Book Description

Bioceramics have been used very successfully within the human body for many years. They are commonly used in orthopaedic surgery and dentistry but they are potentially suitable for a wide range of important applications within the medical device industry. This important book reviews the range of bioceramics, their properties and range of clinical uses.Chapters in the first section of the book discusses issues of significance to a range of bioceramics such as their structure, mechanical properties and biological interactions. The second part reviews the fabrication, microstructure and properties of specific bioceramics and glasses, concentrating on the most promising materials. These include alumina and zirconia ceramics, bioactive glasses and bioactive glass-ceramics, calcium sulphate, tricalcium phosphate-based ceramics, hydroxyapatite, tricalcium phosphate/hydroxyapatite biphasic ceramics, si-substrated hydroxyapatite, calcium phosphate cement, calcium phosphate coating, titania-based materials, ceramic-polymer composites, dental ceramics and dental glass-ceramics. The final group of chapters reviews the clinical applications of bioceramics in joint replacement, bone grafts, tissue engineering and dentistry.Bioceramics and their clinical applications is written by leading academics from around the world and it provides an authoritative review of this highly active area of research. This book is a useful resource for biomaterials scientists and engineers, as well as for clinicians and the academic community. Provides an authoritative review of this highly active area of research Discusses issues of significance of a range of bioceramics such as their structure, mechanical properties and biological interactions Reviews the clinical applications of bioceramics in joint replacement, bone grafts, tissue engineering and dentistry




Calcium Orthophosphates


Book Description

Due to a great chemical similarity with the biological calcified tissues, many calcium orthophosphates possess remarkable biocompatibility and bioactivity. Materials scientists use this property extensively to construct artificial bone grafts that are either entirely made of or only surface-coated with the biologically relevant calcium orthophospha




Bioceramics Calcium Phosphate


Book Description

The first chapters are fundamental, in that the physical chemistry of calcium phosphate salts is discussed, along with mineralization (with emphasis on teeth) and remodelling of mineralized tissues. Thereafter follows a treatment of the influence of implants o surrounding hard tissues. This topic is followed by a chapter on preparation methods and biomechanical and biological aspects of calcium phosphate implants. In conclusion, two chapters are devoted to (possible) dental and medical applications. It is hoped that basic researchers can use the book in their efforts to improve this promising class of materials further, and that clinicians are inspired to define further possibilities and at least as important limitations.




Introduction To Bioceramics, An (2nd Edition)


Book Description

This is the second edition of the classic book An Introduction to Bioceramics which provides a comprehensive overview of all types of ceramic and glass materials that are used in medicine and dentistry. The enormous growth of the field of bioceramics is due to the recognition by the medical and dental community of the importance of bioactive materials to stimulate repair and regeneration of tissues. This edition includes 21 new chapters that document the science and especially the clinical applications of the new generation of bioceramics in the field of tissue regeneration and repair. Important socioeconomic factors influencing the economics and availability of new medical treatments are covered with updates on regulatory procedures for new biomaterials, methods for technology transfer and ethical issues.The book contains 42 chapters that offer the only comprehensive treatment of the science, technology and clinical applications of all types of bioceramic materials used in medicine and dentistry. Each chapter is written by leaders in their specialized fields and is a thorough review of the subject matter, unlike many conference proceedings. All chapters have been edited to reflect the same writing style, making the book an easy read. The completeness of treatment of all types of bioceramics and their clinical applications makes the book unique in the field and invaluable to all readers.







Calcium Phosphate Based Bioceramics for Bone Tissue Engineering


Book Description

Tissue engineering is a new biotechnology that combines various aspects of medicine, biology and engineering, in order to produce, repair or replace human tissue. It is therefore easy to grasp the potential of these new therapies in helping to improve the quality-of-life of patients suffering from rare diseases. Typically, bone tissue engineering approaches foresee the use of scaffolding material combined with tissue cells. An advanced scaffolding material for tissue engineering must exhibit high quality, reliability, sustainability and cost-effectiveness throughout the individual’s life and provide new advanced levels of medical assistance in therapy and surgery. One particular requirement of bone tissue engineering is that the scaffold should be porous because, in that form, large numbers of cells can be incorporated.




Bioceramics and Biocomposites


Book Description

Provides comprehensive coverage of the research into and clinical uses of bioceramics and biocomposites Developments related to bioceramics and biocomposites appear to be one the most dynamic areas in the field of biomaterials, with multiple applications in tissue engineering and medical devices. This book covers the basic science and engineering of bioceramics and biocomposites for applications in dentistry and orthopedics, as well as the state-of-the-art aspects of biofabrication techniques, tissue engineering, remodeling, and regeneration of bone tissue. It also provides insight into the use of bionanomaterials to create new functionalities when interfaced with biological molecules or structures. Featuring contributions from leading experts in the field, Bioceramics and Biocomposites: From Research to Use in Clinical Practice offers complete coverage of everything from extending the concept of hemopoietic and stromal niches, to the evolution of bioceramic-based scaffolds. It looks at perspectives on and trends in bioceramics in endodontics, and discusses the influence of newer biomaterials use on the structuring of the clinician’s attitude in dental practice or in orthopedic surgery. The book also covers such topics as biofabrication techniques for bioceramics and biocomposites; glass ceramics: calcium phosphate coatings; brain drug delivery bone substitutes; and much more. Presents the biggest trends in bioceramics and biocomposites relating to medical devices and tissue engineering products Systematically presents new information about bioceramics and biocomposites, developing diagnostics and improving treatments and their influence on the clinicians' approaches Describes how to use these biomaterials to create new functionalities when interfaced with biological molecules or structures Offers a range of applications in clinical practice, including bone tissue engineering, remodeling, and regeneration Delineates essential requirements for resorbable bioceramics Discusses clinical results obtained in dental and orthopedic applications Bioceramics and Biocomposites: From Research to Use in Clinical Practice is an excellent resource for biomaterials scientists and engineers, bioengineers, materials scientists, and engineers. It will also benefit mechanical engineers and biochemists who work with biomaterials scientists.




Bio-Ceramics with Clinical Applications


Book Description

This publication offers a unique approach that links the materials science of bioceramics to clinical needs and applications. Providing a structured account of this highly active area of research, the book reviews the clinical applications in bone tissue engineering, bone regeneration, joint replacement, drug-delivery systems and biomimetism, this book is an ideal resource for materials scientists and engineers, as well as for clinicians. From the contents: Part I Introduction 1. Bioceramics 2. Biomimetics Part II Materials 3. Calcium Phosphate Bioceramics 4. Silica-based Ceramics: Glasses 5. Silica-based Ceramics: Mesoporous Silica 6. Alumina, Zirconia, and Other Non-oxide Inert Bioceramics 7. Carbon-based Materials in Biomedicine Part III Material Shaping 8. Cements 9. Bioceramic Coatings for Medical Implants 10. Scaffold Designing Part IV Research on Future Ceramics 11. Bone Biology and Regeneration 12. Ceramics for Drug Delivery 13. Ceramics for Gene Transfection 14. Ceramic Nanoparticles for Cancer Treatment




Calcium Phosphates in Biological and Industrial Systems


Book Description

Calcium Phosphates in Biological and Industrial Systems provides a comprehensive discussion on calcium phosphates in the diverse areas of their applications. The authors are all respected specialists in their particular fields, possessing wide knowledge and experience and able to analyze recent results and relate them to their respective areas of expertise. New information, as well as a review of current concepts, highlights the individual contributions. Due to the broad scope of the subject covered and the large number of contributions, this book is divided into three parts. Whilst each section contains a basic theme, there is a considerable overlapping of ideas and approaches. This reflects the excitement and interdisciplinary nature of investigations by researchers interested in dissimilar aspects of calcium phosphates. Considering the general interest in calcium phosphates, Calcium Phosphates in Biological and Industrial Systems is directed at an audience of researchers in the fields of biology, chemistry, dentistry, geology, chemical engineering, environmental engineering, and medicine. It will also be useful to technology-focused researchers in industry whose investigations might be related directly or indirectly to calcium phosphates.