Biochar in Mitigating Abiotic Stress in Plants


Book Description

Biochar for Mitigating Abiotic Stress in Plants provides a unique and leading resource for utilizing biochar to address specific plant health challenges, including osmotic, ionic, and oxidative stress. With a focus on crop yielding plants, the book provides targeted application insights to improve plant health, and resulting crop production. Readers will find important tools toward the identification, treatment, and management of a variety of abiotic stressors through the effective and appropriate application of biochar. This is an important reference for those seeking to apply current knowledge and an inspiration for further research in the area. Biochar is a carbon-rich organic substance produced by the pyrolysis of organic materials in the absence or presence of oxygen. It is an organic matter conditioner that can boost carbon sequestration and organic and inorganic pollutant immobilization. It is a crucial method for soil regeneration. Additionally, biochar facilitates increasing mineral supply and soil organic matter, resulting in soils with increased nutritional content. - Covers the latest evidence-based approach in the diagnosis and management of plants under abiotic stress - Includes easy-to-follow algorithms and key points - Proposes options for sustaining crop production under the effects of climate change




Emerging and Eco-Friendly Approaches for Waste Management


Book Description

Rapid industrialization is a serious concern in the context of a healthy environment. With the growth in the number of industries, the waste generated is also growing exponentially. The various chemical processes operating in the manufacturing industry generate a large number of by-products, which are largely harmful and toxic pollutants and are generally discharged into the natural water bodies. Once the pollutants enter the environment, they are taken up by different life forms, and because of bio-magnification, they affect the entire food chain and have severe adverse effects on all life forms, including on human health. Although, various physico-chemical and biological approaches are available for the removal of toxic pollutants, unfortunately these are often ineffective and traditional clean up practices are inefficient. Biological approaches utilizing microorganisms (bacterial/fungi/algae), green plants or their enzymes to degrade or detoxify environmental pollutants such as endocrine disruptors, toxic metals, pesticides, dyes, petroleum hydrocarbons and phenolic compounds, offer eco- friendly approaches. Such eco-friendly approaches are often more effective than traditional practices, and are safe for both industry workers as well as environment. This book provides a comprehensive overview of various toxic environmental pollutants from a variety natural and anthropogenic sources, their toxicological effects on the environment, humans, animals and plants as well as their biodegradation and bioremediation using emerging and eco-friendly approaches (e.g. Anammox technology, advanced oxidation processes, membrane bioreactors, membrane processes, GMOs), microbial degradation (e.g. bacteria, fungi, algae), phytoremediation, biotechnology and nanobiotechnology. Offering fundamental and advanced information on environmental problems, challenges and bioremediation approaches used for the remediation of contaminated sites, it is a valuable resource for students, scientists and researchers engaged in microbiology, biotechnology and environmental sciences.




Ecological and Practical Applications for Sustainable Agriculture


Book Description

Rampant industrialization, urbanization, and population growth have resulted in increased global environmental contamination. The productivity of agricultural soil is drastically deteriorated and requires a high dose of fertilizers to cultivate crops. To ensure food security, farmers are compelled to apply excess chemical fertilizers and insecticides that contaminate soil, air, and water. Heavy loads of chemical fertilizers not only degrade the quality of agricultural land but also pollute water and air. Use of chemical fertilizers also accelerate the release of greenhouse gases like nitrous oxide and methane along with nutrient runoff from the watershed in to lower elevation rivers and lakes, resulting in cultural eutrophication. Farming practices globally in developed, developing, and under-developing countries should utilize and promote sustainable methods through viable combined environmental, social, and economic means that improve rather than harm future generations. This can include use of non-synthetic fertilizers like compost, vermicompost, slow-release fertilizers, farmyard manures, crop rotations that include nitrogen-fixing legumes. Organic fertilizers like compost and vermicompost improve soil properties like texture, porosity, water-holding capacity, organic matter, as well as nutrient availability. The purpose of this book is to document the available alternatives of synthetic fertilizers, their mode of action, efficiency, preparation methodology, practical suggestions for sustainable practices, and needed research focus. The book will cover major disciplines like plant science, environmental science, agricultural science, agricultural biotechnology and microbiology, horticulture, soil science, atmospheric science, agro-forestry, agronomy, and ecology. This book is helpful for farmers, scientists, industrialists, research scholars, masters and graduate students, non-governmental organizations, financial advisers, and policy makers.




Biochar


Book Description




Environmental Injury to Plants


Book Description

The reaction of plant tissue to stress is of critical importance to growers concerned with the production of horticultural or agronomical plants on a large scale. This book discusses several factors that contribute to plant stress, including freezing and chill injury, drought stress, heat shock, salt stress, and toxic metals. The detection of plant stress by remote sensing devices is also examined.




Abiotic Stress Tolerance Mechanisms in Plants


Book Description

Since recent years, the population across the globe is increasing expeditiously; hence increasing the agricultural productivity to meet the food demands of the thriving population becomes a challenging task. Abiotic stresses pose as a major threat to agricultural productivity. Having an adequate knowledge and apprehension of the physiology and molecular biology of stress tolerance in plants is a prerequisite for counteracting the adverse effect of such stresses to a wider range. This book deals with the responses and tolerance mechanisms of plants towards various abiotic stresses. The advent of molecular biology and biotechnology has shifted the interest of researchers towards unraveling the genes involved in stress tolerance. More effort is being made to understand and pave ways for developing stress tolerance mechanisms in crop plants. Several technologies including Microarray technology, functional genomics, on gel and off gel proteomic approaches have proved to be of utmost importance by helping the physiologists, molecular biologists and biotechnologists in identifying and exploiting various stress tolerance genes and factors for enhancing stress tolerance in plants. This book would serve as an exemplary source of scientific information pertaining to abiotic stress responses and tolerance mechanisms towards various abiotic stresses. Note: T&F does not sell or distribute the Hardback in India, Pakistan, Nepal, Bhutan, Bangladesh and Sri Lanka.




Plant Tolerance to Environmental Stress


Book Description

Global climate change affects crop production through altered weather patterns and increased environmental stresses. Such stresses include soil salinity, drought, flooding, metal/metalloid toxicity, pollution, and extreme temperatures. The variability of these environmental conditions pared with the sessile lifestyle of plants contribute to high exposure to these stress factors. Increasing tolerance of crop plants to abiotic stresses is needed to fulfill increased food needs of the population. This book focuses on methods of improving plants tolerance to abiotic stresses. It provides information on how protective agents, including exogenous phytoprotectants, can mitigate abiotic stressors affecting plants. The application of various phytoprotectants has become one of the most effective approaches in enhancing the tolerance of plants to these stresses. Phytoprotectants are discussed in detail including information on osmoprotectants, antioxidants, phytohormones, nitric oxide, polyamines, amino acids, and nutrient elements of plants. Providing a valuable resource of information on phytoprotectants, this book is useful in diverse areas of life sciences including agronomy, plant physiology, cell biology, environmental sciences, and biotechnology.




Biochar Application


Book Description

Biochar Application: Essential Soil Microbial Ecology outlines the cutting-edge research on the interactions of complex microbial populations and their functional, structural, and compositional dynamics, as well as the microbial ecology of biochar application to soil, the use of different phyto-chemical analyses, possibilities for future research, and recommendations for climate change policy. Biochar, or charcoal produced from plant matter and applied to soil, has become increasingly recognized as having the potential to address multiple contemporary concerns, such as agricultural productivity and contaminated ecosystem amelioration, primarily by removing carbon dioxide from the atmosphere and improving soil functions. Biochar Application is the first reference to offer a complete assessment of the various impacts of biochar on soil and ecosystems, and includes chapters analyzing all aspects of biochar technology and application to soil, from ecogenomic analyses and application ratios to nutrient cycling and next generation sequencing. Written by a team of international authors with interdisciplinary knowledge of biochar, this reference will provide a platform where collaborating teams can find a common resource to establish outcomes and identify future research needs throughout the world. - Includes multiple tables and figures per chapter to aid in analysis and understanding - Includes a comprehensive table of the methods used within the contents, ecosystems, contaminants, future research, and application opportunities explored in the book - Includes knowledge gaps and directions of future research to stimulate further discussion in the field and in climate change policy - Outlines the latest research on the interactions of complex microbial populations and their functional, structural, and compositional dynamics - Offers an assessment of the impacts of biochar on soil and ecosystems




Applications of Biochar for Environmental Safety


Book Description

Biochar is a carbon-rich material produced from the pyrolysis of organic materials from agricultural and forestry biomass at a relatively low temperature in the absence of oxygen. As such, it has potential for solving many agricultural and environmental problems.This book is divided into five sections: “Introduction,” “Production and Legislation of Biochar,” “Applications of Biochar for Soil Fertility Improvement,” “Role of Biochar for Soil Remediation and Ameliorating Salinity Effects” and “Applications of Biochar for Water Treatment.” Chapters address topics such as the pros and cons of biochar, its production, and its role in remediating and treating contaminated soils and water.




Plant Physiology Annual Volume 2023


Book Description

This book summarizes the design of drought-tolerant crops through CRISPR/Cas-mediated genome editing, focusing on reprogramming gene expression patterns that regulate the balance of plant hormones. The organic farming system is presented to highlight the potential role of alleviating changing climate-related abiotic stress. The current knowledge of artificial photosynthesis systems and cellular processes related to photosynthetic biochemistry was illustrated. Additionally, it explores intriguing subtopics of plant physiology, including an alternative natural rubber source and plant reproductive strategies, contributing to advancements in agricultural biotechnology. Recommended for students, teachers, and researchers interested in applied plant physiology, plant biochemistry, and crop breeding.