Tau oligomers


Book Description

Neurofibrillary tangles (NFTs) composed of intracellular aggregates of tau protein are a key neuropathological feature of Alzheimer’s Disease (AD) and other neurodegenerative diseases, collectively termed tauopathies. The abundance of NFTs has been reported to correlate positively with the severity of cognitive impairment in AD. However, accumulating evidences derived from studies of experimental models have identified that NFTs themselves may not be neurotoxic. Now, many of tau researchers are seeking a “toxic” form of tau protein. Moreover, it was suggested that a “toxic” tau was capable to seed aggregation of native tau protein and to propagate in a prion-like manner. However, the exact neurotoxic tau species remain unclear. Because mature tangles seem to be non-toxic component, “tau oligomers” as the candidate of “toxic” tau have been investigated for more than one decade. In this topic, we will discuss our consensus of “tau oligomers” because the term of “tau oligomers” [e.g. dimer (disulfide bond-dependent or independent), multimer (more than dimer), granular (definition by EM or AFM) and maybe small filamentous aggregates] has been used by each researchers definition. From a biochemical point of view, tau protein has several unique characteristics such as natively unfolded conformation, thermo-stability, acid-stability, and capability of post-translational modifications. Although tau protein research has been continued for a long time, we are still missing the mechanisms of NFT formation. It is unclear how the conversion is occurred from natively unfolded protein to abnormally mis-folded protein. It remains unknown how tau protein can be formed filaments [e.g. paired helical filament (PHF), straight filament and twisted filament] in cells albeit in vitro studies confirmed tau self-assembly by several inducing factors. Researchers are still debating whether tau oligomerization is primary event rather than tau phosphorylation in the tau pathogenesis. Inhibition of either tau phosphorylation or aggregation has been investigated for the prevention of tauopathies, however, it will make an irrelevant result if we don’t know an exact target of neurotoxicity. It is a time to have a consensus of definition, terminology and methodology for the identification of “tau oligomers”.




Tau Biology


Book Description

This book presents essential studies and cutting-edge research results on tau, which is attracting increasing interest as a target for the treatment of Alzheimer's disease. Tau is well known as a microtubule-associated protein that is predominantly localized in the axons of neurons. In various forms of brain disease, neuronal loss occurs, with deposition of hyperphosphorylated tau in the remaining neurons. Important questions remain regarding the way in which tau forms hyperphosphorylated and fibrillar deposits in neurons, and whether tau aggregation represents the toxic pathway leading to neuronal death. With the help of new technologies, researchers are now solving these long-standing questions. In this book, readers will find the latest expert knowledge on all aspects of tau biology, including the structure and role of the tau molecule, tau localization and function, the pathology, drivers, and markers of tauopathies, tau aggregation, and treatments targeting tau. Tau Biology will be an invaluable source of information and fresh ideas for those involved in the development of more effective therapies and for all who seek a better understanding of the biology of the aging brain.




Alzheimer's Disease Drug Development


Book Description

Provides a definitive overview of the complex ecosystem facilitating Alzheimer's Disease drug research and development. Demonstrates a drug's journey from in the lab, clinical trial testing, regulatory review, and marketing by pharmaceutical companies. Details the use of artificial intelligence, clinical trial management, and financing models.




Tau Protein


Book Description

This volume explores the latest advancements and techniques to study Tau protein that include basic and advanced methods and protocols from in vitro assays to in vivo models that address the molecular and functional aspects of tau physiopathology and many of its related technical issues. The chapters in this book are organized into five parts: Part One describes conformational and functional studies of native tau protein using wet and non-wet lab protocols. Part Two looks at in vitro methods to monitor or control the formation of Tau oligomers and fibrils, and the fibrillization process. Part Three provides protocols for the characterization and in vitro introduction of post-translational modifications in Tau protein for further functional studies. Part Four describes analytical tools for the detection of Tau proteins under various forms, factors associated with Tau pathology, and MAPT gene studies. Finally, Part Five explores cellular and in vivo models for the investigations of Tau physiopathology. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and comprehensive, Tau Proteins: Methods and Protocols, Second Edition is a valuable tool for any researcher interested in learning more about this important and developing field related to Tau protein as a relevant and attractive target for neurodegeneration therapies.




Cerebrospinal Fluid Biomarkers


Book Description

This volume covers the latest methods used in clinical neurochemistry laboratories for both clinical practice and research. Chapters in this book discuss topics such as techniques for cerebrospinal fluid (CSF) collection, pre-analytical processing, and basic CSF analysis; an examination of biomarkers including ELISA and automated immunochemical assays for amyloid and tau markers for Alzheimer’s disease; the analysis of neurofilaments by digital ELISA; and an example of successful novel immunoassay development. In the Neuromethods series style, chapters include the kind of detail and key advice from the specialists needed to get successful results in your laboratory. Cutting-edge and thorough, Cerebrospinal Fluid Biomarkers is a valuable resource for clinicians and researchers to use in CSF labs and CSF courses.




Proteopathic Seeds and Neurodegenerative Diseases


Book Description

The misfolding and aggregation of specific proteins is an early and obligatory event in many of the age-related neurodegenerative diseases of humans. The initial cause of this pathogenic cascade and the means whereby disease spreads through the nervous system, remain uncertain. A recent surge of research, first instigated by pathologic similarities between prion disease and Alzheimer’s disease, increasingly implicates the conversion of disease-specific proteins into an aggregate-prone b-sheet-rich state as the prime mover of the neurodegenerative process. This prion-like corruptive protein templating or seeding now characterizes such clinically and etiologically diverse neurological disorders as Alzheimer ́s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, and frontotemporal lobar degeneration. Understanding the misfolding, aggregation, trafficking and pathogenicity of the affected proteins could therefore reveal universal pathomechanistic principles for some of the most devastating and intractable human brain disorders. It is time to accept that the prion concept is no longer confined to prionoses but is a promising concept for the understanding and treatment of a remarkable variety of diseases that afflict primarily our aging society. ​




The Biology of Alzheimer Disease


Book Description

Alzheimer disease causes the gradual deterioration of cognitive function, including severe memory loss and impairments in abstraction and reasoning. Understanding the complex changes that occur in the brain as the disease progressesincluding the accumulation of amyloid plaques and neurofibrillary tanglesis critical for the development of successful therapeutic approaches. Written and edited by leading experts in the field, this collection from Cold Spring Harbor Perspectives in Medicine includes contributions covering all aspects of Alzheimer disease, from our current molecular understanding to therapeutic agents that could be used to treat and, ultimately, prevent it. Contributors discuss the biochemistry and cell biology of amyloid -protein precursor (APP), tau, presenilin, -secretase, and apolipoprotein E and their involvement in Alzheimer disease. They also review the clinical, neuropathological, imaging, and biomarker phenotypes of the disease; genetic alterations associated with the disorder; and epidemiological insights into its causation and pathogenesis. This comprehensive volume, which includes discussions of therapeutic strategies that are currently used or under development, is a vital reference for neurobiologists, cell biologists, pathologists, and other scientists pursuing the biological basis of Alzheimer disease, as well as investigators, clinicians, and students interested in its pathogenesis, treatment, and prevention.




Hodges' Frontotemporal Dementia


Book Description

Frontotemporal dementia (FTD) is a cruel disease, robbing patients of core human characteristics and wreaking havoc with relationships. Clinical and scientific interest in FTD and related disorders continues to grow rapidly, with major advances having occurred since this book's last publication. New clinical diagnostic criteria were published in 2011; new pathological discoveries have led to new diagnostic criteria; and major genetic discoveries have been made. This new edition covers these developments, providing the leading resource on FTD, PPA, PSP, CBD, FTD-ALS, and related disorders, now written by a more internationally representative group of authors than before. Providing an in-depth and expert synthesis of the status of our knowledge of FTD and related syndromes, the content includes chapters reviewing clinical, neuropsychiatric, neuropsychological, imaging, and other features of FTD and multidisciplinary approaches to patient management. Essential reading for specialist and generalist neurologists, psychiatrists, geriatricians, neuropsychologists, neuropathologists, and basic scientists in relevant fields.




Amyloid Proteins


Book Description

A proven collection of readily reproducible techniques for studying amyloid proteins and their involvement in the etiology, pathogenesis, diagnosis, and therapy of amyloid diseases. The contributors provide methods for the preparation of amyloid and its precursors (oligomers and protofibrils), in vitro assays and analytical techniques for their study, and cell culture models and assays for the production of amyloid proteins. Additional chapters present readily reproducible techniques for amyloid extraction from tissue, its detection in vitro and in vivo, as well as nontransgenic methods for developing amyloid mouse models. The protocols follow the successful Methods in Molecular BiologyTM series format, each offering step-by-step laboratory instructions, an introduction outlining the principle behind the technique, lists of the necessary equipment and reagents, and tips on troubleshooting and avoiding known pitfalls.




Untangling the Role of Tau in Physiology and Pathology


Book Description

This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact.