Biodiesel Science and Technology


Book Description

Biodiesel production is a rapidly advancing field worldwide, with biodiesel fuel increasingly being used in compression ignition (diesel) engines. Biodiesel has been extensively studied and utilised in developed countries, and it is increasingly being introduced in developing countries, especially in regions with high potential for sustainable biodiesel production.Initial sections systematically review feedstock resources and vegetable oil formulations, including the economics of vegetable oil conversion to diesel fuel, with additional coverage of emerging energy crops for biodiesel production. Further sections review the transesterification process, including chemical (catalysis) and biochemical (biocatalysis) processes, with extended coverage of industrial process technology and control methods, and standards for biodiesel fuel quality assurance. Final chapters cover the sustainability, performance and environmental issues of biodiesel production, as well as routes to improve glycerol by-product usage and the development of next-generation products.Biodiesel science and technology: From soil to oil provides a comprehensive reference to fuel engineers, researchers and academics on the technological developments involved in improving biodiesel quality and production capacity that are crucial to the future of the industry. - Evaluates biodiesel as a renewable energy source and documents global biodiesel development - The outlook for biodiesel science and technology is presented exploring the challenges faced by the global diesel industry - Reviews feedstock resources and vegetable oil formation including emerging crops and the agronomic potential of underexploited oil crops




Biodiesel Science and Technology


Book Description

Biodiesel production is a rapidly advancing field worldwide, with biodiesel fuel increasingly being used in compression ignition (diesel) engines. Biodiesel has been extensively studied and utilised in developed countries, and it is increasingly being introduced in developing countries, especially in regions with high potential for sustainable biodiesel production. Initial sections systematically review feedstock resources and vegetable oil formulations, including the economics of vegetable oil conversion to diesel fuel, with additional coverage of emerging energy crops for biodiesel production. Further sections review the transesterification process, including chemical (catalysis) and biochemical (biocatalysis) processes, with extended coverage of industrial process technology and control methods, and standards for biodiesel fuel quality assurance. Final chapters cover the sustainability, performance and environmental issues of biodiesel production, as well as routes to improve glycerol by-product usage and the development of next-generation products. Biodiesel science and technology: From soil to oil provides a comprehensive reference to fuel engineers, researchers and academics on the technological developments involved in improving biodiesel quality and production capacity that are crucial to the future of the industry. Evaluates biodiesel as a renewable energy source and documents global biodiesel development The outlook for biodiesel science and technology is presented exploring the challenges faced by the global diesel industry Reviews feedstock resources and vegetable oil formation including emerging crops and the agronomic potential of underexploited oil crops




Advanced Biofuel Technologies


Book Description

Advanced Biofuel Technologies: Present Status, Challenges and Future Prospects deals with important issues such as feed stock availability, technology options, greenhouse gas reduction as seen by life cycle assessment studies, regulations and policies. This book provides readers complete information on the current state of developments in both thermochemical and biochemical processes for advanced biofuels production for the purpose of transportation, domestic and industrial applications. Chapters explore technological innovations in advanced biofuels produced from agricultural residues, algae, lipids and waste industrial gases to produce road transport fuels, biojet fuel and biogas. - Covers technologies and processes of different types of biofuel production - Outlines a selection of different types of renewable feedstocks for biofuel production - Summarizes adequate and balanced coverage of thermochemical and biochemical methods of biomass conversion into biofuel - Includes regulations, policies and lifecycle and techno-economic assessments




A Closer Look at Biodiesel Production


Book Description

Biodiesel is considered a viable alternative to the use of fossil fuel, as it is a renewable and biodegradable fuel, providing many environmental benefits. A Closer Look at Biodiesel Production describes new prospects of biodiesel production and updates the different researches on raw materials for the production of new sources of biofuels. The book contains thirteen chapters that are divided into five sections for a better understanding for the reader.The first section presents an extensive and profound review of the fundamentals of biodiesel production and the application of heterogeneous catalysts in this process. The second section assesses the influence of the raw material and provides insight into non-conventional raw materials that can be used for biodiesel production, such as Macroinvetebrate Larvae and Wastewater Treatment Plant Sludge. The third section aims to present an extended discussion on biodiesel production from microalgae to feedstock. The third section shows the importance of the implementation of a biorefinery, using all microalgae products to make the processes economically viable. The objective of the fourth section was to apply modeling and simulation techniques that can assist in the design and assisted development of catalysts and methods for obtaining sustainable and ecological biofuels and to develop new separators of the co-products of the biodiesel production process. The last section is about the microbial conversion of crude glycerol to bioplastics and their building-block molecules.This book aims to provide an in-depth analysis and discussion of the basics of biodiesel production, developing new value-added biofuels and their biorefineries of possible products from an improved raw material. The target audience includes researchers, engineering design and biodiesel production facilities and graduates seeking a benchmark in biodiesel production.




The Biodiesel Handbook


Book Description

The second edition of this invaluable handbook covers converting vegetable oils, animal fats, and used oils into biodiesel fuel. The Biodiesel Handbook delivers solutions to issues associated with biodiesel feedstocks, production issues, quality control, viscosity, stability, applications, emissions, and other environmental impacts, as well as the status of the biodiesel industry worldwide. - Incorporates the major research and other developments in the world of biodiesel in a comprehensive and practical format - Includes reference materials and tables on biodiesel standards, unit conversions, and technical details in four appendices - Presents details on other uses of biodiesel and other alternative diesel fuels from oils and fats




Biofuels


Book Description

Biofuel is a renewable energy source produced from natural materials. The benefits of biofuels over traditional petroleum fuels include greater energy security, reduced environmental impact, foreign exchange savings, and socioeconomic issues related to the rural sector. The most common biofuels are produced from classic food crops that require high-quality agricultural land for growth. However, bioethanol can be produced from plentiful, domestic, cellulosic biomass resources such as herbaceous and woody plants, agricultural and forestry residues, and a large portion of municipal and industrial solid waste streams. There is also a growing interest in the use of vegetable oils for making biodiesel. “Biofuels: Securing the Planet’s Future Energy Needs” discusses the production of transportation fuels from biomass (such as wood, straw and even household waste) by Fischer-Tropsch synthesis. The book is an important text for students and researchers in energy engineering, as well as professional fuel engineers.




Biofuels for Aviation


Book Description

Biofuels for Aviation: Feedstocks, Technology and Implementation presents the issues surrounding the research and use of biofuels for aviation, such as policy, markets, certification and performance requirements, life cycle assessment, and the economic and technical barriers to their full implementation. Readers involved in bioenergy and aviation sectors—research, planning, or policy making activities—will benefit from this thorough overview. The aviation industry's commitment to reducing GHG emissions along with increasing oil prices have sparked the need for renewable and affordable energy sources tailored to this sector's very specific needs. As jet engines cannot be readily electrified, turning to biofuels is the most viable option. However, aviation is a type of transportation for which traditional biofuels, such as bioethanol and biodiesel, do not fulfill key fuel requirements. Therefore, different solutions to this situation are being researched and tested around the globe, which makes navigating this scenario particularly challenging. This book guides readers through this intricate subject, bringing them up to speed with its current status and future prospects both from the academic and the industry point of view. Science and technology chapters delve into the technical aspects of the currently tested and the most promising technology in development, as well as their respective feedstocks and the use of additives as a way of adapting them to meet certain specifications. Conversion processes such as hydrotreatment, synthetic biology, pyrolysis, hydrothermal liquefaction and Fisher-Tropsch are explored and their results are assessed for current and future viability. - Presents the current status of biofuels for the aviation sector, including technologies that are currently in use and the most promising future technologies, their production processes and viability - Explains the requirements for certification and performance of aviation fuels and how that can be achieved by biofuels - Explores the economic and policy issues, as well as life cycle assessment, a comparative techno-economic analysis of promising technologies and a roadmap to the future - Explores conversion processes such as hydrotreatment, synthetic biology, pyrolysis, hydrothermal liquefaction and Fisher-Tropsch




Biofuels and Bioenergy


Book Description

The newest addition to the Green Chemistry and Chemical Engineering series from CRC Press, Biofuels and Bioenergy: Processes and Technologies provides a succinct but in-depth introduction to methods of development and use of biofuels and bioenergy. The book illustrates their great appeal as tools for solving the economic and environmental challenges associated with achieving energy sustainability and independence through the use of clean, renewable alternative energy. Taking a process engineering approach rooted in the fuel and petrochemical fields, this book masterfully integrates coverage of current conventional processes and emerging techniques. Topics covered include: Characterization and analysis of biofuels Process economics Chemistry of process conversion Process engineering and design and associated environmental technologies Energy balances and efficiencies Reactor designs and process configurations Energy materials and process equipment Integration with other conventional fossil fuel processes Byproduct utilization Governmental regulations and policies and global trends After an overview of the subject, the book discusses crop oils, biodiesel, and algae fuels. It examines ethanol from corn and from lignocelluloses and then explores fast pyrolysis and gasification of biomass. Discussing the future of biofuel production, it also describes the conversion of waste to biofuels, bioproducts, and bioenergy and concludes with a discussion of mixed feedstock. Written for readers with college-level backgrounds in chemistry, biology, physics, and engineering, this reference explores the science and technology involved in developing biofuels and bioenergy. It addresses the application of these and other disciplines, covering key issues of special interest to fuel process engineers, fuel scientists, and energy technologists, among others.




Handbook of Biofuels Production


Book Description

Handbook of Biofuels Production, Second Edition, discusses advanced chemical, biochemical, and thermochemical biofuels production routes that are fast being developed to address the global increase in energy usage. Research and development in this field is aimed at improving the quality and environmental impact of biofuels production, as well as the overall efficiency and output of biofuels production plants. The book provides a comprehensive and systematic reference on the range of biomass conversion processes and technology. Key changes for this second edition include increased coverage of emerging feedstocks, including microalgae, more emphasis on by-product valorization for biofuels' production, additional chapters on emerging biofuel production methods, and discussion of the emissions associated with biofuel use in engines. The editorial team is strengthened by the addition of two extra members, and a number of new contributors have been invited to work with authors from the first edition to revise existing chapters, thus offering fresh perspectives. - Provides systematic and detailed coverage of the processes and technologies being used for biofuel production - Discusses advanced chemical, biochemical, and thermochemical biofuels production routes that are fast being developed to address the global increase in energy usage - Reviews the production of both first and second generation biofuels - Addresses integrated biofuel production in biorefineries and the use of waste materials as feedstocks




Liquid Biofuels


Book Description

Compiled by a well-known expert in the field, Liquid Biofuels provides a profound knowledge to researchers about biofuel technologies, selection of raw materials, conversion of various biomass to biofuel pathways, selection of suitable methods of conversion, design of equipment, selection of operating parameters, determination of chemical kinetics, reaction mechanism, preparation of bio-catalyst: its application in bio-fuel industry and characterization techniques, use of nanotechnology in the production of biofuels from the root level to its application and many other exclusive topics for conducting research in this area. Written with the objective of offering both theoretical concepts and practical applications of those concepts, Liquid Biofuels can be both a first-time learning experience for the student facing these issues in a classroom and a valuable reference work for the veteran engineer or scientist. The description of the detailed characterization methodologies along with the precautions required during analysis are extremely important, as are the detailed description about the ultrasound assisted biodiesel production techniques, aviation biofuels and its characterization techniques, advance in algal biofuel techniques, pre-treatment of biomass for biofuel production, preparation and characterization of bio-catalyst, and various methods of optimization. The book offers a comparative study between the various liquid biofuels obtained from different methods of production and its engine performance and emission analysis so that one can get the utmost idea to find the better biofuel as an alternative fuel. Since the book covers almost all the field of liquid biofuel production techniques, it will provide advanced knowledge to the researcher for practical applications across the energy sector. A valuable reference for engineers, scientists, chemists, and students, this volume is applicable to many different fields, across many different industries, at all levels. It is a must-have for any library.