Bioelectrochemistry III


Book Description

This book contains aseries of review papers related to the lectures given at the Third Course on Bioelectrochemistry held at Erice in November 1988, in the framework of the International School of Biophysics. The topics covered by this course, "Charge Separation Across Biomembranes, " deal with the electrochemical aspects of some basic phenomena in biological systems, such as transport of ions, ATP synthesis, formation and maintenance of ionic and protonic gradients. In the first part of the course some preliminary lectures introduce the students to the most basic phenomena and technical aspects of membrane bioelectrochemistry. The remaining part of the course is devoted to the description of a selected group of membrane-enzyme systems, capable of promoting, or exploiting, the processes of separation of electrically charged entities (electrons or ions) across the membrane barrier. These systems are systematically discussed both from a structural and functional point of view. The effort of the many distinguished lecturers who contributed to the course is aimed at offering a unifying treatement of the electrogenic systems operating in biological membranes, underlying the fundamental differences in the molecular mechanisms of charge translocation.




Advances in Bioelectrochemistry Volume 3


Book Description

This book presents a collection of chapters on modern bioelectrochemistry, showing different aspects of biodevices. The chapters cover biomedical applications, virus and antigens detection, miniaturized and wearable devices, screen-printed biosensors, hybrids surfaces, point-of-care and molecular diagnoses. They provide relevant bibliographic information for researchers and students interested in field effect transistors for biomedical applications, virus and antigens detection in immuno technologies and biosensors in point-of-care for molecular analysis, with strategies and perspectives to healthcare. This book also presents insights on advantages and properties of materials aiming biosensors applications.




Bioelectrochemistry


Book Description

Bioelectrochemistry is a fast growing field at the interface between electrochemistry and other sciences such as biochemistry, analytical chemistry and medicinal chemistry. In the recent years, the methods and the understanding of the fundamentals have seen significant progress, which has led to rapid development in the field. Here, the expert editors have carefully selected contributions to best reflect the latest developments in this hot and rapidly growing interdisciplinary topic. The resulting excellent and timely overview of this multifaceted field covers recent methodological advances, as well as a range of new applications for analytical detection, drug screening, tumor therapy, and for energy conversion in biofuel cells. This book is a must-have for all Electrochemists, Biochemists, Analytical Chemists, and Medicinal Chemists.




Current Catalog


Book Description

First multi-year cumulation covers six years: 1965-70.




National Library of Medicine Current Catalog


Book Description

First multi-year cumulation covers six years: 1965-70.




Bioelectrochemistry II


Book Description

This book contains the lectures of the second course devoted to bioelectro chemistry, held within the framework of the International School of Biophysics. In this course another very large field of bioelectrochemistry, i. e. the field of Membrane Phenomena, was considered, which itself consists of several different, but yet related subfields. Here again, it can be easily stated that it is impossible to give a complete and detailed picture of all membrane phenomena of biological interest in a short course of about one and half week. Therefore the same philosophy, as the one of the first course, was followed, to select a series of lectures at postgraduate level, giving a synthesis of several membrane phenomena chosen among the most'important ones. These lectures should show the large variety of membrane-regulated events occurring in living bodies, and serve as sound interdisciplinary basis to start a special ized study of biological phenomena, for which the investigation using the dual approach, physico-chemical and biological, is unavoidable. Since, as already mentioned, it was impossible to exhaust, even roughly, is a short course like this, the presentation and introductory treatment of the extremely large variety of membrane phenomena, it can be expected that the third course will continue the subject of membrane phenomena deepening some ones presented in this course and introducing some new ones. vii CONTENTS Symbols and acronyms IX Opening address G. MILAZZO 1 Structure of biological membranes and of their models I J . A. HAYWARD et al.




Bioelectrochemistry Stimulated Environmental Remediation


Book Description

This book reviews the latest advances in the bioelectrochemical degradation of recalcitrant environmental contaminants. The first part introduces readers to the basic principles and methodologies of bioelectrochemical systems, electron-respiring microorganisms, the electron transfer mechanism and functional electrode materials. In turn, the second part addresses the bioelectrochemical remediation/treatment of various environmental pollutants (including highly toxic refractory organics, heavy metals, and nitrates) in wastewater, sediment and wetlands. Reactor configuration optimization, hybrid technology amplification and enhanced removal principles and techniques are also discussed. The book offers a valuable resource for all researchers and professionals working in environmental science and engineering, bioelectrochemistry, environmental microbiology and biotechnology.




Electromagnetic Fields and Biomembranes


Book Description

The First International School on "Electromagnetic Fields and Biomembranes" took place in Pleven, Bulgaria on 6-12 October 1986. It was designed as an advanced course through a collaboration of the Biological Faculty of Sofia University and the Council of the Bioelectrochemical Society. In an advanced course the lecturers are specialized in particular areas, and the students are usually specialists in related areas. We have captured the expertise of both groups of participants in this volume. The longer papers prepared by the lecturers are joined with the shorter papers based on the posters presented by the "students" to provide a summary of the school as well as an indication of current research directions in the field. The course was designed to provide the latest information about biomembrane structure and function, covering the properties of both the lipid matrix and the recently characterized proteins that function as specialized channels and receptors. Real membranes and various models were covered, with an emphasis on understanding their mechanisms of interaction with various exogenous stimuli (e.g., electric, magnetic, light, etc.). Several practical applications of this information (e.g., electroporation, electro-fusion) were also presented with indications of the possibilities for new developments in biotechnology. The mixture of basic science with practical applications, together with the int~rmingling of lecturers and students from many different countries produced a stimulating atmosphere and effective teaching. We hope that this volume will transmit some of this atmosphere.




New Techniques for Future Accelerators III


Book Description

A fundamental step towards gaining a deeper understanding of our world is to increase the resolution of the investigative instruments we use; i.e. to increase the energy, and hence to decrease the wavelength, of the particles which constitute our probes. Almost any substantial progress in our understanding of the fundamental laws of Nature has been obtained when a new generation of accelerators has allowed us to achieve a new energy range. The new results have generated new questions, thus encouraging us to construct new machines to reach even higher energy levels. The relative energy gain from one generation of accelerators to the next is progressively increasing. The energy ga in suggested by the theoretical predictions at the time has usually been much greater than the value allowed by our technical capabilities. But this smaller energy gain permitted by accelerator technology improvement has generally been sufficient up until now to bring about a substantial increase in our knowledge. Hence a large increase in accelerator energy is very important, and we know that this result can essentially be obtained by developing some new device or some new approach.




Bioelectrochemistry


Book Description

Bioelectrochemistry is a fast growing field linking together electrochemistry, biochemistry, medicinal chemistry and analytical chemistry. The current book outlines the recent progress in the area and the applications in biological materials design and bioenergy, covering in particular biosensors, bioelectronic devices, biofuel cells, biodegradable batteries and biomolecule-based computing.