Bioengineering in the Real World


Book Description

Take a look into the fascinating world of bioengineering, why it is an intriguing STEM career, and the amazing work scientists in this field have accomplished throughout the years.




Capstone Design Courses


Book Description

The biomedical engineering senior capstone design course is probably the most important course taken by undergraduate biomedical engineering students. It provides them with the opportunity to apply what they have learned in previous years; develop their communication (written, oral, and graphical), interpersonal (teamwork, conflict management, and negotiation), project management, and design skills; and learn about the product development process. It also provides students with an understanding of the economic, financial, legal, and regulatory aspects of the design, development, and commercialization of medical technology. The capstone design experience can change the way engineering students think about technology, society, themselves, and the world around them. It gives them a short preview of what it will be like to work as an engineer. It can make them aware of their potential to make a positive contribution to health care throughout the world and generate excitement for and pride in the engineering profession. Working on teams helps students develop an appreciation for the many ways team members, with different educational, political, ethnic, social, cultural, and religious backgrounds, look at problems. They learn to value diversity and become more willing to listen to different opinions and perspectives. Finally, they learn to value the contributions of nontechnical members of multidisciplinary project teams. Ideas for how to organize, structure, and manage a senior capstone design course for biomedical and other engineering students are presented here. These ideas will be helpful to faculty who are creating a new design course, expanding a current design program to more than the senior year, or just looking for some ideas for improving an existing course.




Introduction to Bioengineering


Book Description

Bioengineering is attracting many high quality students. This invaluable book has been written for beginning students of bioengineering, and is aimed at instilling a sense of engineering in them.Engineering is invention and designing things that do not exist in nature for the benefit of humanity. Invention can be taught by making inventive thinking a conscious part of our daily life. This is the approach taken by the authors of this book. Each author discusses an ongoing project, and gives a sample of a professional publication. Students are asked to work through a sequence of assignments and write a report. Almost everybody soon realizes that more scientific knowledge is needed, and a strong motivation for the study of science is generated. The teaching of inventive thinking is a new trend in engineering education. Bioengineering is a good field with which to begin this revolution in engineering education, because it is a youthful, developing interdisciplinary field.




Handbook of Deep Learning in Biomedical Engineering


Book Description

Deep Learning (DL) is a method of machine learning, running over Artificial Neural Networks, that uses multiple layers to extract high-level features from large amounts of raw data. Deep Learning methods apply levels of learning to transform input data into more abstract and composite information. Handbook for Deep Learning in Biomedical Engineering: Techniques and Applications gives readers a complete overview of the essential concepts of Deep Learning and its applications in the field of Biomedical Engineering. Deep learning has been rapidly developed in recent years, in terms of both methodological constructs and practical applications. Deep Learning provides computational models of multiple processing layers to learn and represent data with higher levels of abstraction. It is able to implicitly capture intricate structures of large-scale data and is ideally suited to many of the hardware architectures that are currently available. The ever-expanding amount of data that can be gathered through biomedical and clinical information sensing devices necessitates the development of machine learning and AI techniques such as Deep Learning and Convolutional Neural Networks to process and evaluate the data. Some examples of biomedical and clinical sensing devices that use Deep Learning include: Computed Tomography (CT), Magnetic Resonance Imaging (MRI), Ultrasound, Single Photon Emission Computed Tomography (SPECT), Positron Emission Tomography (PET), Magnetic Particle Imaging, EE/MEG, Optical Microscopy and Tomography, Photoacoustic Tomography, Electron Tomography, and Atomic Force Microscopy. Handbook for Deep Learning in Biomedical Engineering: Techniques and Applications provides the most complete coverage of Deep Learning applications in biomedical engineering available, including detailed real-world applications in areas such as computational neuroscience, neuroimaging, data fusion, medical image processing, neurological disorder diagnosis for diseases such as Alzheimer's, ADHD, and ASD, tumor prediction, as well as translational multimodal imaging analysis. - Presents a comprehensive handbook of the biomedical engineering applications of DL, including computational neuroscience, neuroimaging, time series data such as MRI, functional MRI, CT, EEG, MEG, and data fusion of biomedical imaging data from disparate sources, such as X-Ray/CT - Helps readers understand key concepts in DL applications for biomedical engineering and health care, including manifold learning, classification, clustering, and regression in neuroimaging data analysis - Provides readers with key DL development techniques such as creation of algorithms and application of DL through artificial neural networks and convolutional neural networks - Includes coverage of key application areas of DL such as early diagnosis of specific diseases such as Alzheimer's, ADHD, and ASD, and tumor prediction through MRI and translational multimodality imaging and biomedical applications such as detection, diagnostic analysis, quantitative measurements, and image guidance of ultrasonography




Nature-Inspired Intelligent Techniques for Solving Biomedical Engineering Problems


Book Description

Technological tools and computational techniques have enhanced the healthcare industry. These advancements have led to significant progress and novel opportunities for biomedical engineering. Nature-Inspired Intelligent Techniques for Solving Biomedical Engineering Problems is a pivotal reference source for emerging scholarly research on trends and techniques in the utilization of nature-inspired approaches in biomedical engineering. Featuring extensive coverage on relevant areas such as artificial intelligence, clinical decision support systems, and swarm intelligence, this publication is an ideal resource for medical practitioners, professionals, students, engineers, and researchers interested in the latest developments in biomedical technologies.




Kernel Methods in Bioengineering, Signal and Image Processing


Book Description

"This book presents an extensive introduction to the field of kernel methods and real world applications. The book is organized in four parts: the first is an introductory chapter providing a framework of kernel methods; the others address Bioegineering, Signal Processing and Communications and Image Processing"--Provided by publisher.




Biomedical Engineering


Book Description

The second edition of this popular introductory undergraduate textbook uses examples, applications, and profiles of biomedical engineers to show students the relevance of the theory and how it can be used to solve real problems in human medicine. The essential molecular biology, cellular biology, and human physiology background is included for students to understand the context in which biomedical engineers work. Updates throughout highlight important advances made over recent years, including iPS cells, microRNA, nanomedicine, imaging technology, biosensors, and drug delivery systems, giving students a modern description of the various subfields of biomedical engineering. Over two hundred quantitative and qualitative exercises, many new to this edition, help consolidate learning, whilst a solutions manual, password-protected for instructors, is available online. Finally, students can enjoy an expanded set of leader profiles in biomedical engineering within the book, showcasing the broad range of career paths open to students who make biomedical engineering their calling.




Career Development in Bioengineering and Biotechnology


Book Description

This indispensable guide provides a roadmap to the broad and varied career development opportunities in bioengineering, biotechnology, and related fields. Eminent practitioners lay out career paths related to academia, industry, government and regulatory affairs, healthcare, law, marketing, entrepreneurship, and more. Lifetimes of experience and wisdom are shared, including "war stories," strategies for success, and discussions of the authors’ personal views and motivations.




Biomedical Engineering for Global Health


Book Description

Can technology and innovation transform world health? Connecting undergraduate students with global problems, Rebecca Richards-Kortum examines the interplay between biomedical technology design and the medical, regulatory, economic, social and ethical issues surrounding global health. Driven by case studies, including cancer screening, imaging technologies, implantable devices and vaccines, students learn how the complexities and variation across the globe affect the design of devices and therapies. A wealth of learning features, including classroom activities, project assignments, homework problems and weblinks within the book and online, provide a full teaching package. For visionary general science and biomedical engineering courses, this book will inspire students to engage in solving global issues that face us all.