Bioethanol Fuel Production Processes. II


Book Description

This book provides an overview of the research on production processes for bioethanol fuels in general, hydrolysis of the pretreated biomass for bioethanol production, microbial fermentation of hydrolysates and substrates with yeasts for bioethanol production, and separation and distillation of bioethanol fuels from the fermentation broth, complementing the research on biomass pretreatments presented in the first volume. It presents an overview of the research on biomass hydrolysis in general, wood hydrolysis, straw hydrolysis, and cellulose hydrolysis for bioethanol fuel production in the first section for biomass hydrolysis. It provides an overview of the research on microbial hydrolysate fermentation for bioethanol production in general, alternative fermentation processes for bioethanol fuel production such as simultaneous saccharification and fermentation (SSF) and consolidated biomass processing (CBP) compared with the separate hydrolysis and fermentation (SHF) process, metabolic engineering of microorganisms and substrates for bioethanol fuel production, and utilization of Saccharomyces cerevisiae for microbial fermentation of hydrolysates for bioethanol fuel production in the second section for hydrolysate fermentation. It provides an overview of the research on the bioethanol fuel separation from the fermentation broth in the last section. This book is a valuable resource for the stakeholders primarily in the research fields of energy and fuels, chemical engineering, environmental science and engineering, biotechnology, microbiology, chemistry, physics, mechanical engineering, agricultural sciences, food science and engineering, materials science, biochemistry, genetics, molecular biology, plant sciences, water resources, economics, business, management, transportations science and technology, ecology, public, environmental and occupational health, social sciences, toxicology, multidisciplinary sciences, and humanities among others.




Bioethanol Fuel Production Processes. I


Book Description

This book presents research on biomass pretreatments, which are a fundamental part of bioethanol fuel production to make biomass more accessible. This book also includes an introductory section on the bioethanol fuels. Bioethanol Fuel Production Processes. I: Biomass Pretreatments is the first volume in the Handbook of Bioethanol Fuels (Six-Volume Set). The primary pretreatments at the macro level are the biological chemical, hydrothermal, and mechanical pretreatments of the biomass. It also has an introductory section on the biomass pretreatments at large for bioethanol fuel production. The major pretreatments at the micro level are the enzymatic and fungal pretreatments of the biomass as the biological pretreatments, acid, alkaline, ionic liquid, and organic solvent pretreatment pretreatments of the biomass as the chemical pretreatments, steam explosion and liquid hot water pretreatments of the biomass as the hydrothermal pretreatments, and milling, ultrasonic, and microwave pretreatments of the biomass as the mechanical pretreatments. The first volume also indicates that a wide range of pretreatments stand alone or in combination with each other fractionate the biomass to its constituents of cellulose, lignin, and hemicellulose and improve both sugar and bioethanol fuel yield, making this bioethanol fuel more competitive in relation to crude oil- and natural gas-based fossil fuels. This first volume is a valuable resource for the stakeholders primarily in the research fields of energy and fuels, chemical engineering, environmental science and engineering, biotechnology, microbiology, chemistry, physics, mechanical engineering, agricultural sciences, food science and engineering, materials science, biochemistry, genetics, molecular biology, plant sciences, water resources, economics, business, management, transportation science and technology, ecology, public, environmental and occupational health, social sciences, toxicology, multidisciplinary sciences, and humanities among others.




Process Synthesis for Fuel Ethanol Production


Book Description

Process engineering can potentially provide the means to develop economically viable and environmentally friendly technologies for the production of fuel ethanol. Focusing on a key tool of process engineering, Process Synthesis for Fuel Ethanol Production is a comprehensive guide to the design and analysis of the most advanced technologies for fuel




Bioethanol Production from Food Crops


Book Description

Bioethanol Production from Food Crops: Sustainable Sources, Interventions and Challenges comprehensively covers the global scenario of ethanol production from both food and non-food crops and other sources. The book guides readers through the balancing of the debate on food vs. fuel, giving important insights into resource management and the environmental and economic impact of this balance between demands. Sections cover Global Bioethanol from Food Crops and Forest Resource, Bioethanol from Bagasse and Lignocellulosic wastes, Bioethanol from algae, and Economics and Challenges, presenting a multidisciplinary approach to this complex topic. As biofuels continue to grow as a vital alternative energy source, it is imperative that the proper balance is reached between resource protection and human survival. This book provides important insights into achieving that balance. - Presents technological interventions in ethanol production, from plant biomass, to food crops - Addresses food security issues arising from bioethanol production - Identifies development bottlenecks and areas where collaborative efforts can help develop more cost-effective technology




Handbook of Biofuels Production


Book Description

In response to the global increase in the use of biofuels as substitute transportation fuels, advanced chemical, biochemical and thermochemical biofuels production routes are fast being developed.Research and development in this field is aimed at improving the quality and environmental impact of biofuels production, as well as the overall efficiency and output of biofuels production plants. The range of biofuels has also increased to supplement bioethanol and biodiesel production, with market developments leading to the increased production and utilisation of such biofuels as biosyngas, biohydrogen and biobutanol, among others.Handbook of biofuels production provides a comprehensive and systematic reference on the range of biomass conversion processes and technology. Part one reviews the key issues in the biofuels production chain, including feedstocks, sustainability assessment and policy development.Part two reviews chemical and biochemical conversion and in turn Part three reviews thermal and thermo-chemical conversion, with both sections detailing the wide range of processes and technologies applicable to the production of first, second and third generation biofuels. Finally, Part four reviews developments in the integration of biofuels production, including biorefineries and by-product valorisation, as well as the utilisation of biofuels in diesel engines.With its distinguished international team of contributors, Handbook of biofuels production is a standard reference for biofuels production engineers, industrial chemists and biochemists, plant scientists, academics and researchers in this area. - A comprehensive and systematic reference on the range of biomass conversion processes and technologies - Addresses the key issues in the biofuels production chain, including feedstocks, sustainability assessment and policy development - Reviews chemical and bio-chemical conversion techniques as well as thermal and thermo-chemical conversion, detailing the range of processes and technologies applicable to biofuels production




Feedstock-based Bioethanol Fuels. II. Waste Feedstocks


Book Description

This book provides an overview of research on the production of bioethanol fuels from waste feedstocks such as second-generation residual sugar and starch feedstocks, food waste, industrial waste, urban waste, forestry waste, and lignocellulosic biomass at large with 17 chapters. In this context, there are eight sections where the first two chapters cover the production of bioethanol fuels from waste feedstocks at large. This book is the fourth volume in the Handbook of Bioethanol Fuels (Six-Volume Set). It shows that pretreatments and hydrolysis of the waste feedstocks, fermentation of hydrolysates, and separation and distillation of bioethanol fuels are the fundamental processes for bioethanol fuel production from these waste feedstocks. This book is a valuable resource for stakeholders primarily in research fields of energy and fuels, chemical engineering, environmental science and engineering, biotechnology, microbiology, chemistry, physics, mechanical engineering, agricultural sciences, food science and engineering, materials science, biochemistry, genetics, molecular biology, plant sciences, water resources, economics, business and management, transportation science and technology, ecology, public, environmental and occupational health, social sciences, toxicology, multi-disciplinary sciences, and humanities among others.




Evaluation and Utilization of Bioethanol Fuels. II.


Book Description

Presents the direct use of bioethanol fuels in electric cars and the indirect use of bioethanol fuels in electric cars in the form of biohydrogen produced from bioethanol fuels Discusses bioethanol fuel-based bioelectricity production, bioethanol fuel-based biochemical and biohydrocarbon production Discusses direct bioethanol fuel cells, bioethanol fuel electrooxidation, catalysts for bioethanol fuel oxidation, and nanotechnology applications in fuel cells Includes case studies of bioethanol fuel-based biochemical and biohydrocarbon production, nanosensors, ZnO-based nanosensors, and SnO2-based nanosensors




Handbook of Biofuels Production


Book Description

Handbook of Biofuels Production, Second Edition, discusses advanced chemical, biochemical, and thermochemical biofuels production routes that are fast being developed to address the global increase in energy usage. Research and development in this field is aimed at improving the quality and environmental impact of biofuels production, as well as the overall efficiency and output of biofuels production plants. The book provides a comprehensive and systematic reference on the range of biomass conversion processes and technology. Key changes for this second edition include increased coverage of emerging feedstocks, including microalgae, more emphasis on by-product valorization for biofuels' production, additional chapters on emerging biofuel production methods, and discussion of the emissions associated with biofuel use in engines. The editorial team is strengthened by the addition of two extra members, and a number of new contributors have been invited to work with authors from the first edition to revise existing chapters, thus offering fresh perspectives. - Provides systematic and detailed coverage of the processes and technologies being used for biofuel production - Discusses advanced chemical, biochemical, and thermochemical biofuels production routes that are fast being developed to address the global increase in energy usage - Reviews the production of both first and second generation biofuels - Addresses integrated biofuel production in biorefineries and the use of waste materials as feedstocks




Sustainable Seaweed Technologies


Book Description

Sustainable Seaweed Technologies: Cultivation, Biorefinery, and Applications collates key background information on efficient cultivation and biorefinery of seaweeds, combining underlying chemistry and methodology with industry experience. Beginning with a review of the opportunities for seaweed biorefinery and the varied components and properties of macroalgae, the book then reviews all the key steps needed for industrial applications, from its cultivation, collection and processing, to extraction techniques, concentration and purification. A range of important applications are then discussed, including the production of energy and novel materials from seaweed, before a set of illustrative case studies shows how these various stages work in practice. Drawing on the expert knowledge of a global team of editors and authors, this book is a practical resource for both researchers and businesses who currently work with macroalgae. - Highlights the specific challenges and benefits of developing seaweed for sustainable products - Presents useful case studies that demonstrate varied approaches and methodologies in practice - Covers the complete seaweed chain, from cultivation to waste management




Biofuels Production


Book Description

The search for alternative sources of energy to offset diminishing resources of easy and cost-effective fossil fuels has become a global initiative, and fuel generated from biomass is a leading competitor in this arena. Large-scale introduction of biofuels into the energy mix could contribute to environmentally and economicaly sustainable development on a global scale. The processes and methodologies presented in this volume will offer a cutting-edge and comprehensive approach to the production of biofuels, for engineers, researchers, and students.