Biofabrication for Orthopedics


Book Description

Biofabrication for Orthopedics A comprehensive overview of biofabrication techniques for orthopedics and their novel applications With an ever-increasing global population and the rise in the occurrence of orthopedic diseases amongst an aging population, it is essential for technological advances to meet this growing medical need. Orthopedic biofabrication is a cutting-edge field that seeks to produce novel clinical solutions to this mounting problem, through the incorporation of revolutionary technologies that have the potential to not only transform healthcare, but also provide highly automated and personalized patient solutions. With the advances in the discipline, there is a significant growing interest in biofabrication for orthopedics in research activity geared towards routine clinical use. Ideal for a broad readership amongst medical practitioners and scientists, Biofabrication for Orthopedics summarizes all aspects of the topic: detailed information on the technology, along with advanced developments, research progress, and future perspectives on biofabrication for orthopaedics—particularly on the potential applications for tissue engineering technologies. In doing so, the book describes the various biomaterials—natural and synthetic—use for orthopedics and discusses the many ways in which these materials can be used in all parts of the body. As such, it offers detailed information on a wide range of applications in the fields of biology and clinical and industrial manufacturing. Biofabrication for Orthopedics readers will also find: Insights into the applications of biofabrication technologies in various bodily functions Thorough discussion of different biofabrication techniques used in creating orthopedic products, like stereolithography, cell sheet and organ bioprinting, electrospinning, and microfluidics Discussion of a wide range of diverse functions, such as bone implants, skin regeneration, vascularization, meniscus remodeling, and more Biofabrication for Orthopedics is a useful reference for those in a variety of research fields like medical-related practitioners and scientists, materials science, medicine, and manufacturing, as well as the libraries who support them.




Biofabrication for Orthopedics, 2 Volumes


Book Description

Biofabrication for Orthopedics A comprehensive overview of biofabrication techniques for orthopedics and their novel applications With an ever-increasing global population and the rise in the occurrence of orthopedic diseases amongst an aging population, it is essential for technological advances to meet this growing medical need. Orthopedic biofabrication is a cutting-edge field that seeks to produce novel clinical solutions to this mounting problem, through the incorporation of revolutionary technologies that have the potential to not only transform healthcare, but also provide highly automated and personalized patient solutions. With the advances in the discipline, there is a significant growing interest in biofabrication for orthopedics in research activity geared towards routine clinical use. Ideal for a broad readership amongst medical practitioners and scientists, Biofabrication for Orthopedics summarizes all aspects of the topic: detailed information on the technology, along with advanced developments, research progress, and future perspectives on biofabrication for orthopaedics—particularly on the potential applications for tissue engineering technologies. In doing so, the book describes the various biomaterials—natural and synthetic—use for orthopedics and discusses the many ways in which these materials can be used in all parts of the body. As such, it offers detailed information on a wide range of applications in the fields of biology and clinical and industrial manufacturing. Biofabrication for Orthopedics readers will also find: Insights into the applications of biofabrication technologies in various bodily functions Thorough discussion of different biofabrication techniques used in creating orthopedic products, like stereolithography, cell sheet and organ bioprinting, electrospinning, and microfluidics Discussion of a wide range of diverse functions, such as bone implants, skin regeneration, vascularization, meniscus remodeling, and more Biofabrication for Orthopedics is a useful reference for those in a variety of research fields like medical-related practitioners and scientists, materials science, medicine, and manufacturing, as well as the libraries who support them.




Orthopedic Biomaterials


Book Description

This book covers the latest progress in the biology and manufacturing of orthopedic biomaterials, as well as key industry perspectives. Topics covered include the development of biomaterial-based medical products for orthopedic applications, anti-infection technologies for orthopedic implants, additive manufacturing of orthopedic implants, and more. This is an ideal book for graduate students, researchers and professionals working with orthopedic biomaterials and tissue engineering. This book also: Provides an industry perspective on technologies to prevent orthopedic implant related infection Thoroughly covers how to modulate innate inflammatory reactions in the application of orthopedic biomaterials Details the state-of-the-art research on 3D printed porous bone constructs




Biomaterials in Orthopaedics and Bone Regeneration


Book Description

This book focuses on the recent advances in the field of orthopaedic biomaterials, with a particular emphasis on their design and fabrication. Biomimetic materials, having similar properties and functions to that of the natural tissue, are becoming a popular choice for making customized orthopaedic implants and bone scaffolds. The acceptability of these materials in the human body depends on the right balance between their mechanical and biological properties. This book provides a comprehensive overview of the state-of-the-art research in this rapidly evolving field. The chapters cover different aspects of multi-functional biomaterials design, and cutting-edge methods for the synthesis and processing of these materials. Advanced manufacturing techniques, like additive manufacturing, used for developing new biomimetic materials are highlighted in the book. This book is a valuable reference for students and researchers interested in biomaterials for orthopaedic applications.




Orthopedic Biomaterials


Book Description

This book covers the latest advances, applications, and challenges in orthopedic biomaterials. Topics covered include materials for orthopedic applications, including nanomaterials, biomimetic materials, calcium phosphates, polymers, biodegradable metals, bone grafts/implants, and biomaterial-mediated drug delivery. Absorbable orthopedic biomaterials and challenges related to orthopedic biomaterials are covered in detail. This is an ideal book for graduate and undergraduate students, researchers, and professionals working with orthopedic biomaterials and tissue engineering. This book also: Describes biodegradable metals for orthopedic applications, such as Zn-based medical implants Thoroughly covers various materials for orthopedic applications, including absorbable orthopedic biomaterials with a focus on polymers Details the state-of-the-art research on orthopedic nanomaterials and nanotechnology




Biomechanics and Biomaterials in Orthopedics


Book Description

Current clinical orthopedic practice requires practitioners to have extensive knowledge of a wide range of disciplines from molecular biology to bioengineering and from the application of new methods to the evaluation of outcome. The biomechanics of and biomaterials used in orthopedics have become increasingly important as the possibilities have increased to treat patients with foreign material introduced both as optimized osteosynthesis after trauma and as arthroplasties for joint diseases, sequelae of trauma or for tumor treatment. Furthermore, biomaterial substitutes are constantly being developed to replace missing tissue. Biomechanics and Biomaterials in Orthopedics provides an important update within this highly important field. Professor Dominique Poitout has collected a series of high-quality chapters by globally renowned researchers and clinicians. Under the auspices of the International Society of Orthopaedic Surgery and Traumatology (SICOT) and International Society of Orthopaedic and Traumatology Research (SIROT), this book now provides permanent and specific access to the considerable international knowledge in the field of locomotor system trauma and disease treatment using the novel bioengineering solutions. This book covers both basic concepts concerning biomaterials and biomechanics as well as their clinical application and the experience from everyday practical use. This book will be of great value to specialists in orthopedics and traumatology, while also provide an important basis for graduate and postgraduate learning.




Biomaterials in Orthopedics


Book Description

Written by respected experts in the field, Biomaterials in Orthopedics discusses bioabsorbable biomaterials for bone repair, nondegradable materials in orthopaedics and delivery systems. Topics in this text include biocompatibility and the biomaterial/tissue interface; self-reinforced bioabsorbable devices and guided regeneration; bone substitutes,




Biomaterials in Hand Surgery


Book Description

Biomaterials are used in many areas of medicine, particularly in surgery and d- tistry. In orthopedic surgery, total hip arthroplasty has been extremely successful, and has been called ‘the operation of the 20th century’. Total hip arthroplasty is r- tinely performed every day in most orthopedic departments. Over the last decades, many efforts have been made to better integrate the components within the recipient bones, to decrease the friction at the prosthetic interface, and to minimize wear. Minimally invasive procedures have been developed, and various designs are inte- ed to preserve as much as possible of the bone stock of young patients. By contrast, the clinical results have been less favorable after various hand and wrist joint replacements. Many early designs have failed, the clinical data of the current pr- theses are frequently quite limited, and there is often insufficient biomechanical information available, although trapezio-metacarpal arthroplasty in particular has become quite popular in recent years. In order to promote progress in hand and wrist arthroplasty, Antonio Merolli and Thomas J. Joyce have edited this lovely book, whose chapters discuss current research and recent advances in hand and wrist arthroplasty. The problems of metacarpophalangeal joint prostheses are particularly developed.




Kenzan Method for Scaffold-Free Biofabrication


Book Description

This is the first book about the “Kenzan” method for scaffold-free biofabrication, which does not rely on biomaterials as scaffolds to ensure correct multicellular spheroid positioning for building three dimensional construct only made from cells. The book explains the basic principles and concepts of the microneedle-based (“Kenzan”) method of building surgically-implantable tissue constructs using robotic cell spheroid-based three-dimensional bioprinting, a novel technology that opens up unique opportunities for the bioengineering of tissues and organs. First book on the novel Kenzan method of tissue engineering; Explains basic concepts and applications for organ regeneration modeling; Introduces a unique robotic system for scaffold-free cell construction.




Handbook of Research on Advanced Functional Materials for Orthopedic Applications


Book Description

Scaffold bone replacements are a safe and effective way to cure bone abnormalities, and porous scaffolds can be manufactured using additive manufacturing technology. When scaffolds are implanted in a damaged location, they quickly connect to the host tissue and integrate, stimulating bone production and development. The qualities of porous titanium must be matched to the properties of human bones (i.e., age, sex, and hormones). Using subtractive manufacturing, it is extremely difficult to create the complicated porous structure necessary for the desired characteristic. The Handbook of Research on Advanced Functional Materials for Orthopedic Applications highlights current research pertinent to the orthopedic applications of additive-produced scaffolds in order to consider the latest breakthroughs in the synthesis and multifunctional applications of scaffolds. Covering key topics such as tissue, additive manufacturing, and biomaterial, this major reference work is ideal for industry professionals, engineers, researchers, academicians, practitioners, scholars, instructors, and students.