New and Future Developments in Microbial Biotechnology and Bioengineering: Microbial Biofilms


Book Description

New and Future Developments in Microbial Biotechnology and Bioengineering: Microbial Biofilms is divided into three sections: microbial adhesion/biofilms in medical settings, microbial adhesion/biofilms in agriculture, and microbial adhesion/biofilm in the environment and industry. Chapters cover adhesion and biofilm formation by pathogenic microbes on tissue and on indwelling medical devices, including sections on human infections, microbial communication during biofilm mode of growth, host defense and antimicrobial resistance, and more. Other sections cover the biofilms of agriculturally important and environmental friendly microbes, including biofilm formation on plants, in soil, and in aquatic environments. Finally, the latest scientific research on microbial adhesion and biofilm formation in the environment and in industry is covered. Provides an overview on the growth, structure, cell-to-cell interactions, and control/dispersal of bacterial and fungal of in vitro and in vivo biofilms Presents an overview on the microbial adhesion, biofilm formation and structures of single-species and multi-species biofilms on human tissues/medical devices, agriculture, environment and chemical industries Includes chapters on microbial biofilms of pathogenic microbes on human tissues and in medical indwelling devices Covers factors affecting microbial biofilm, adhesion and formation




Biofilms in Bioengineering


Book Description

It is a natural tendency of microorganisms to attach to surfaces, to multiply and to embed themselves in a slimy matrix, resulting in biofilms. Biofilms constitute a protected growth modality that allows the microorganisms to survive in hostile environments. Biofilm science is a relatively new technical discipline, which has emerged in response to the need of methodologies for biofilm control. Biofilms represent an interdisciplinary research area focused on the understanding and modulating of the combination of biological and chemical reactions, as well as in transport and interfacial transfer processes, that potentially affect the microbial accumulation and activity on abiotic and biotic surfaces. Research on biofilms has progressed rapidly in the last decade. Due to the fact that biofilms have required the development of new analytical tools, many recent advances have resulted from collaborations between biologists, engineers and mathematicians. The scientific community has come to understand many things about the particular biology of microbial biofilms through a variety of microscopic, physical, chemical, and molecular techniques of study. This book provides a remarkable amount of knowledge on the processes that regulate biofilm formation; on the methods used for their formation, monitoring, characterization and mathematical modeling; on the problems caused by their presence in the food industry, environment and medical fields; and describes the current and emergent strategies for their control. The information in this book is designed to be of use to researchers and engineers working on fundamental aspects of biofilm formation and control and also to be helpful in conducting biofilm studies and in the consistent interpretation of results.




Introduction to Biofilm Engineering


Book Description

How to protect your sight by choosing the right eye and face wear.




Biofilms in Medicine, Industry and Environmental Biotechnology


Book Description

Biofilms are of great practical importance for beneficial technologies such as water and wastewater treatment and bioremediation of groundwater and soil. In other settings biofilms cause severe problems, for example in 65% of bacterial infections currently treated by clinicians (particularly those associated with prosthetics and implants), accelerated corrosion in industrial systems, oil souring and biofouling. Until recently, the structure and function of biofilms could only be inferred from gross measures of biomass and metabolic activity. This limitation meant that investigators involved in biofilm research and application had only a crude understanding of the microbial ecology, physical structure and chemical characteristics of biofilms. Consequently, opportunities for the exploitation and control of biofilms were very limited. The past decade has witnessed the development of several new techniques to elucidate the structure and function of biofilms. Examples include: the use of molecular probes that identify different microbes in complex communities as well as their metabolic functions; the use of microsensors that show concentration gradients of key nutrients and chemicals; the use of confocal laser scanning microscopy to describe the physical structure of biofilms and the development of a new generation of mathematical models that allow for the prediction of biofilm structure and function. However, much progress remains to be made in efforts to understand, control and exploit biofilms. This timely book will introduce its readers to the structure and function of biofilms at a fundamental level as determined during the past decade of research, including: Extracellular polymers as the biofilm matrix; Biofilm phenotype (differential gene expression, interspecies signalling); Biofilm ecology; Biofilm monitoring; Resistance of biofilms to antimicrobial agents and Biofilm abatement. Biofilms in Medicine, Industry and Environmental Technology offers a holistic and multi-disciplinary description of the topic, including biofilm formation and composition, but also biofilm monitoring, disinfection and control. All these aspects are presented from three points of views: medical, industrial and environmental biotechnological in a compact, easy to read format.




Productive Biofilms


Book Description

This book review series presents current trends in modern biotechnology. The aim is to cover all aspects of this interdisciplinary technology where knowledge, methods and expertise are required from chemistry, biochemistry, microbiology, genetics, chemical engineering and computer science. Volumes are organized topically and provide a comprehensive discussion of developments in the respective field over the past 3-5 years. The series also discusses new discoveries and applications. Special volumes are dedicated to selected topics which focus on new biotechnological products and new processes for their synthesis and purification. In general, special volumes are edited by well-known guest editors. The series editor and publisher will however always be pleased to receive suggestions and supplementary information. Manuscripts are accepted in English.




Biofilms


Book Description

Volume 310 of Methods in Enzymology is the first volume devoted solely to biofilm research methods. It provides a contemporary source book for virtually any kind of experimental approach involving biofilms. It includes bioengineering, molecular, genetic, microscopic, chemical, continuous culture, and physical methods. This volume will serve as a starting point for future developments.The critically acclaimed laboratory standard for more than forty years, Methods in Enzymology is one of the most highly respected publications in the field of biochemistry. Since 1955, each volume has been eagerly awaited, frequently consulted, and praised by researchers and reviewers alike. Now with more than 300 volumes (all of them still in print), the series contains much material still relevant today--truly an essential publication for researchers in all fields of life sciences.




Biofilms and Implantable Medical Devices


Book Description

Biofilms and Implantable Medical Devices: Infection and Control explores the increasing use of permanent and semi-permanent implants and indwelling medical devices. As an understanding of the growth and impact of biofilm formation on these medical devices and biomaterials is vital for protecting the health of the human host, this book provides readers with a comprehensive treatise on biofilms and their relationship with medical devices, also reporting on infections and associated strategies for prevention. Provides useful information on the fundamentals of biofilm problems in medical devices Discusses biofilm problems in a range of medical devices Focuses on strategies for prevention of biofilm formation




Fundamentals of Biofilm Research, Second Edition


Book Description

The six years that have passed since the publication of the first edition have brought significant advances in both biofilm research and biofilm engineering, which have matured to the extent that biofilm-based technologies are now being designed and implemented. As a result, many chapters have been updated and expanded with the addition of sections reflecting changes in the status quo in biofilm research and engineering. Emphasizing process analysis, engineering systems, biofilm applications, and mathematical modeling, Fundamentals of Biofilm Research, Second Edition provides the tools to unify and advance biofilm research as a whole. Retaining the goals of the first edition, this second edition serves as: A compendium of knowledge about biofilms and biofilm processes A set of instructions for designing and conducting biofilm experiments A set of instructions for making and using various tools useful in biofilm research A set of computational procedures useful in interpreting results of biofilm research A set of instructions for using the model of stratified biofilms for data interpretation, analysis, and biofilm activity prediction




Formation and Control of Biofilm in Various Environments


Book Description

This book provides excellent techniques for detecting and evaluating biofilms: sticky films on materials that are formed by bacterial activity and produce a range of industrial and medical problems such as corrosion, sanitary problems, and infections. Accordingly, it is essential to control biofilms and to establish appropriate countermeasures, from both industrial and medical viewpoints. This book offers valuable, detailed information on these countermeasures. It also discusses the fundamentals of biofilms, relates various substrates to biofilms, and presents a variety of biofilm reactors. However, the most important feature of this book (unlike others on the market) is its clear focus on addressing the practical aspects from an engineering viewpoint. Therefore, it offers an excellent practical guide for engineers and researchers in various fields, and can also be used as a great academic textbook.