Biogas Processes for Sustainable Development


Book Description

Intended to assist engineers, government officials and funding agencies to meet present and future challenges and make decisions on the promotion of anaerobic digestion as an alternative source of energy.




Biogas Technology


Book Description

The global demand for energy is met mainly by fossil fuels. Their excessive and indiscriminate use, coupled with increasing demand for energy, will soon deplete their existing reserves. Therefore, it is extremely important to find alternative, environment-friendly, and ecologically sound sources of energy for meeting the present and future energy requirements. Biogas Technology: Towards Sustainable Development makes an attempt to explore the potential of utilizing biodegradable biomass as fuel and manure.




Biogas Processes for Sustainable Development


Book Description

Intended to assist engineers, government officials and funding agencies to meet present and future challenges and make decisions on the promotion of anaerobic digestion as an alternative source of energy.




Biogas Production


Book Description

This book focuses on biogas production by anaerobic digestion, which is the most popular bioenergy technology of today. Using anaerobic digestion for the production of biogas is a sustainable approach that simultaneously also allows the treatment of organic waste. The energy contained in the substrate is released in the form of biogas, which can be employed as a renewable fuel in diverse industrial sectors. Although biogas generation is considered an established process, it continues to evolve, e.g. by incorporating modifications and improvements to increase its efficiency and its downstream applications. The chapters of this book review the progress made related to feedstock, system configuration and operational conditions. It also addresses microbial pathways utilized, as well as storage, transportation and usage of biogas. This book is an up-to-date resource for scientists and students working on improving biogas production.




Sustainable Food Waste-to-Energy Systems


Book Description

Sustainable Food Waste-to-Energy Systems assesses the utilization of food waste in sustainable energy conversion systems. It explores all sources of waste generated in the food supply chain (downstream from agriculture), with coverage of industrial, commercial, institutional and residential sources. It provides a detailed analysis of the conventional pathways for food waste disposal and utilization, including composting, incineration, landfilling and wastewater treatment. Next, users will find valuable sections on the chemical, biochemical and thermochemical waste-to-energy conversion processes applicable for food waste and an assessment of commercially available sustainable food waste-to-energy conversion technologies. Sustainability aspects, including consideration of environmental, economic and social impacts are also explored. The book concludes with an analysis of how deploying waste-to-energy systems is dependent on cross-cutting research methods, including geographical information systems and big data. It is a useful resource for professionals working in waste-to-energy technologies, as well as those in the food industry and food waste management sector planning and implementing these systems, but is also ideal for researchers, graduate students, energy policymakers and energy analysts interested in the most recent advances in the field. - Provides guidance on how specific food waste characteristics drive possible waste-to-energy conversion processes - Presents methodologies for selecting among different waste-to-energy options, based on waste volumes, distribution and properties, local energy demand (electrical/thermal/steam), opportunities for industrial symbiosis, regulations and incentives and social acceptance, etc. - Contains tools to assess potential environmental and economic performance of deployed systems - Links to publicly available resources on food waste data for energy conversion




Biogas


Book Description

This book presents the state of the art in biogas production using anaerobic digestion technology, with an emphasis on waste utilization/valorization. Offering a comprehensive reference guide to biogas production from different waste streams, it covers various aspects of anaerobic digestion technology from the basics, i.e., microbiological aspects to prominent parameters governing biogas production systems, as well as major principles of their operation, analysis, process control, and troubleshooting. Written and edited by internationally recognized experts in the field of biogas production from both academia and industry, it provides in-depth and cutting-edge information on central developments in the field. In addition, it discusses and reviews major issues affecting biogas production, including the type of feedstock, pretreatment techniques, production systems, design and fabrication of biogas plants, as well as biogas purification and upgrading technologies. ‘Biogas: Fundamentals, Process, and Operation’ also addresses the application of advanced environmental and energy evaluation tools including life cycle assessment (LCA), exergy, techno-economics, and modeling techniques. This book is intended for all researchers, practitioners and students who are interested in the current trends and future prospects of biogas production technologies.




Contested Natures


Book Description

Demonstrating that all notions of nature are inextricably entangled in different forms of social life, the text elaborates the many ways in which the apparently natural world has been produced from within particular social practices. These are analyzed in terms of different senses, different times and the production of distinct spaces, including the local, the national and the global. The authors emphasize the importance of cultural understandings of the physical world, highlighting the ways in which these have been routinely misunderstood by academic and policy discourses. They show that popular conceptions of, and attitudes to, nature are often contradictory and that there are no simple ways of prevailing upon people to `




Biogas Energy


Book Description

In recent years, the importance of biogas energy has risen manifold and has become universal. This is due to the realization that biogas capture and utilization has great potential in controlling global warming. By capturing biogas wherever it is formed, we not only tap a source of clean energy, but we also prevent the escape of methane to the atmosphere. Given that methane has 25 times greater global warming potential than CO2, methane capture through biogas energy in this manner can contribute substantially towards global warming control.




Biogas from Waste and Renewable Resources


Book Description

Written as a practical introduction to biogas plant design and operation, this book fills a huge gap by presenting a systematic guide to this emerging technology -- information otherwise only available in poorly intelligible reports by US governmental and other official agencies. The author draws on teaching material from a university course as well as a wide variety of industrial biogas projects he has been involved with, thus combining didactical skill with real-life examples. Alongside biological and technical aspects of biogas generation, this timely work also looks at safety and legal aspects as well as environmental considerations.




Biogas Production


Book Description

Biogas Production covers the most cutting-edge pretreatment processes being used and studied today for the production of biogas. As an increasingly important piece of the "energy pie," biogas and other biofuels are being used more and more around the world in every conceivable area of industry and could be a partial answer to the energy problem and the elimination of global warming. This book will highlight the recent advances in the pretreatment and value addition of lignocellulosic wastes (LCW) with the main focus on domestic and agro-industrial residues. Mechanical, physical, and biological treatment systems are brought into perspective. The main value-added products from lignocellulosic wastes are summarized in a manner that pinpoints the most recent trends and the future directions. Physico-chemical and biological treatment systems seem to be the most favored options while biofuels, biodegradable composites, and biosorbents production paint a bright picture of the current and future bio-based products. Engineered microbes seem to tackle the problem of bioconversion of substrates that are otherwise nonconvertible by conventional wild strains. Although the main challenge facing LCW utilization is the high costs involved in treatment and production processes, some recent affordable processes with promising results have been proposed. Future trends are being directed to nanobiotechnology and genetic engineering for improved processes and products.