POLAR NIGHT Marine Ecology


Book Description

Until recently, the prevailing view of marine life at high latitudes has been that organisms enter a general resting state during the dark Polar Night and that the system only awakens with the return of the sun. Recent research, however, with coordinated, multidisciplinary field campaigns based on the high Arctic Archipelago of Svalbard, have provided a radical new perspective. Instead of a system in dormancy, a new perspective of a system in full operation and with high levels of activity across all major phyla is emerging. Examples of such activities and processes include: Active marine organisms at sea surface, water column and the sea-floor. At surface we find active foraging in seabirds and fish, in the water column we find a high biodiversity and activity of zooplankton and larvae such as active light induced synchronized diurnal vertical migration, and at seafloor there is a high biodiversity in benthic animals and macroalgae. The Polar Night is a period for reproduction in many benthic and pelagic taxa, mass occurrence of ghost shrimps (Caprellides), high abundance of Ctenophores, physiological evidence of micro- and macroalgal cells that are ready to utilize the first rays of light when they appear, deep water fishes found at water surface in the Polar night, and continuous growth of bivalves throughout the winter. These findings not only begin to shape a new paradigm for marine winter ecology in the high Arctic, but also provide conclusive evidence for a top-down controlled system in which primary production levels are close to zero. In an era of environmental change that is accelerated at high latitudes, we believe that this new insight is likely to strongly impact how the scientific community views the high latitude marine ecosystem. Despite the overwhelming darkness, the main environmental variable affecting marine organisms in the Polar Night is in fact light. The light regime during the Polar Night is unique with respect to light intensity, spectral composition of light and photoperiod.




The Ocean and Cryosphere in a Changing Climate


Book Description

The Intergovernmental Panel on Climate Change (IPCC) is the leading international body for assessing the science related to climate change. It provides policymakers with regular assessments of the scientific basis of human-induced climate change, its impacts and future risks, and options for adaptation and mitigation. This IPCC Special Report on the Ocean and Cryosphere in a Changing Climate is the most comprehensive and up-to-date assessment of the observed and projected changes to the ocean and cryosphere and their associated impacts and risks, with a focus on resilience, risk management response options, and adaptation measures, considering both their potential and limitations. It brings together knowledge on physical and biogeochemical changes, the interplay with ecosystem changes, and the implications for human communities. It serves policymakers, decision makers, stakeholders, and all interested parties with unbiased, up-to-date, policy-relevant information. This title is also available as Open Access on Cambridge Core.




Global Biogeochemical Cycles in the Climate System


Book Description

The interactions of biogeochemical cycles influence and maintain our climate system. Land use and fossil fuel emissions are currently impacting the biogeochemical cycles of carbon, nitrogen and sulfur on land, in the atmosphere, and in the oceans.This edited volume brings together 27 scholarly contributions on the state of our knowledge of earth system interactions among the oceans, land, and atmosphere. A unique feature of this treatment is the focus on the paleoclimatic and paleobiotic context for investigating these complex interrelationships.* Eight-page colour insert to highlight the latest research* A unique feature of this treatment is the focus on the paleoclimatic context for investigating these complex interrelationships.




Alaska's Changing Arctic


Book Description

In this edition of the Long Term Ecological Research Network series, editors John Hobbie and George Kling and 58 co-authors synthesize the findings from the NSF-funded Arctic LTER project based at Toolik Lake, Alaska, a site that has been active since the mid-1970s. The book presents research on the core issues of climate-change science in the treeless arctic region of Alaska. As a whole, it examines both terrestrial and freshwater-aquatic ecosystems, and their three typical habitats: tundra, streams, and lakes. The book provides a history of the Toolik Lake LTER site, and discusses its present condition and future outlook. It features contributions from top scientists from many fields, creating a multidisciplinary survey of the Alaskan arctic ecosystem. Chapter topics include glacial history, climatology, land-water interactions, mercury found in the Alaskan arctic, and the response of these habitats to environmental change. The final chapter predicts the consequences that arctic Alaska faces due to global warming and climate change, and discusses the future ecology of the LTER site in the region. Alaska's Changing Arctic is the definitive scientific survey of the past, present, and future of the ecology of the Alaskan arctic.




Second Assessment of Climate Change for the Baltic Sea Basin


Book Description

​This book is an update of the first BACC assessment, published in 2008. It offers new and updated scientific findings in regional climate research for the Baltic Sea basin. These include climate changes since the last glaciation (approx. 12,000 years ago), changes in the recent past (the last 200 years), climate projections up until 2100 using state-of-the-art regional climate models and an assessment of climate-change impacts on terrestrial, freshwater and marine ecosystems. There are dedicated new chapters on sea-level rise, coastal erosion and impacts on urban areas. A new set of chapters deals with possible causes of regional climate change along with the global effects of increased greenhouse gas concentrations, namely atmospheric aerosols and land-cover change. The evidence collected and presented in this book shows that the regional climate has already started to change and this is expected to continue. Projections of potential future climates show that the region will probably become considerably warmer and wetter in some parts, but dryer in others. Terrestrial and aquatic ecosystems have already shown adjustments to increased temperatures and are expected to undergo further changes in the near future. The BACC II Author Team consists of 141 scientists from 12 countries, covering various disciplines related to climate research and related impacts. BACC II is a project of the Baltic Earth research network and contributes to the World Climate Research Programme.




Frontiers in Understanding Climate Change and Polar Ecosystems


Book Description

The polar regions are experiencing rapid changes in climate. These changes are causing observable ecological impacts of various types and degrees of severity at all ecosystem levels, including society. Even larger changes and more significant impacts are anticipated. As species respond to changing environments over time, their interactions with the physical world and other organisms can also change. This chain of interactions can trigger cascades of impacts throughout entire ecosystems. Evaluating the interrelated physical, chemical, biological, and societal components of polar ecosystems is essential to understanding their vulnerability and resilience to climate forcing. The Polar Research Board (PRB) organized a workshop to address these issues. Experts gathered from a variety of disciplines with knowledge of both the Arctic and Antarctic regions. Participants were challenged to consider what is currently known about climate change and polar ecosystems and to identify the next big questions in the field. A set of interdisciplinary "frontier questions" emerged from the workshop discussions as important topics to be addressed in the coming decades. To begin to address these questions, workshop participants discussed the need for holistic, interdisciplinary systems approach to understanding polar ecosystem responses to climate change. As an outcome of the workshop, participants brainstormed methods and technologies that are crucial to advance the understanding of polar ecosystems and to promote the next generation of polar research. These include new and emerging technologies, sustained long-term observations, data synthesis and management, and data dissemination and outreach.




Handbook of Climate Change Mitigation


Book Description

There is a mounting consensus that human behavior is changing the global climate and its consequence could be catastrophic. Reducing the 24 billion metric tons of carbon dioxide emissions from stationary and mobile sources is a gigantic task involving both technological challenges and monumental financial and societal costs. The pursuit of sustainable energy resources, environment, and economy has become a complex issue of global scale that affects the daily life of every citizen of the world. The present mitigation activities range from energy conservation, carbon-neutral energy conversions, carbon advanced combustion process that produce no greenhouse gases and that enable carbon capture and sequestion, to other advanced technologies. From its causes and impacts to its solutions, the issues surrounding climate change involve multidisciplinary science and technology. This handbook will provide a single source of this information. The book will be divided into the following sections: Scientific Evidence of Climate Change and Societal Issues, Impacts of Climate Change, Energy Conservation, Alternative Energies, Advanced Combustion, Advanced Technologies, and Education and Outreach.




Ocean Biogeochemistry


Book Description

Oceans account for 50% of the anthropogenic CO2 released into the atmosphere. During the past 15 years an international programme, the Joint Global Ocean Flux Study (JGOFS), has been studying the ocean carbon cycle to quantify and model the biological and physical processes whereby CO2 is pumped from the ocean's surface to the depths of the ocean, where it can remain for hundreds of years. This project is one of the largest multi-disciplinary studies of the oceans ever carried out and this book synthesises the results. It covers all aspects of the topic ranging from air-sea exchange with CO2, the role of physical mixing, the uptake of CO2 by marine algae, the fluxes of carbon and nitrogen through the marine food chain to the subsequent export of carbon to the depths of the ocean. Special emphasis is laid on predicting future climatic change.




Soil Biogeochemistry in Temperate and Arctic Ecosystems


Book Description

I investigated the effects of two contemporary disturbances to soil systems: forest clearing in the northeastern U.S. and climate-driven plant succession in the Arctic. To test the effects of clear-cutting forests on mineral soil carbon (C) storage, I collected deep mineral soil cores from twenty forest stands, representing seven geographic areas and a range of times since harvest. I compared recently harvested forests to >100-year-old forests and used an information theoretic approach to uncover controls on C pool dynamics over time since disturbance. I found no significant differences between total soil C pools in >100-year-old and clear-cut forests. However, I found a significant negative relationship between time since harvest and the size of mineral soil C pools, which suggested a gradual decline in mineral soil C pools across the region after harvesting. To test differences in grass- versus shrub-dominated Arctic soils, I collected twenty deep mineral soil cores in western Greenland and determined soil texture, pH, C and N pools and C:N ratios by depth. To understand if vegetation type was associated with physiochemical mechanisms of soil C storage, I employed a novel sequential extraction method for measuring organo-mineral pools of increasing bond-strength within the soil strata. I found that: (i) total mineral soil C and N storage was significantly lower under shrubs than under grass, and the magnitude of this difference would likely outweigh any positive increases in aboveground C storage with shrub expansion; (ii) chemical mechanisms of C storage in the organo-mineral fraction of the soil did not differ between grass and shrub soils, and (ii) weak adsorption to mineral surfaces accounted for 40-60% of C storage in the organo-mineral soil fraction in both treatments, which is a pool that is relatively sensitive to environmental disturbance. My research suggests that both direct soil disturbance, such as forest harvest, and indirect disturbance, such as climate-driven shifts in species ranges, does cause changes to biogeochemical cycling and may result in C loss from the landscape. These results have implications for understanding the flux of greenhouse gases from Arctic and temperate soils in a changing environment.