Applying Big Data Analytics in Bioinformatics and Medicine


Book Description

Many aspects of modern life have become personalized, yet healthcare practices have been lagging behind in this trend. It is now becoming more common to use big data analysis to improve current healthcare and medicinal systems, and offer better health services to all citizens. Applying Big Data Analytics in Bioinformatics and Medicine is a comprehensive reference source that overviews the current state of medical treatments and systems and offers emerging solutions for a more personalized approach to the healthcare field. Featuring coverage on relevant topics that include smart data, proteomics, medical data storage, and drug design, this publication is an ideal resource for medical professionals, healthcare practitioners, academicians, and researchers interested in the latest trends and techniques in personalized medicine.




Big Data Analytics in Bioinformatics and Healthcare


Book Description

As technology evolves and electronic data becomes more complex, digital medical record management and analysis becomes a challenge. In order to discover patterns and make relevant predictions based on large data sets, researchers and medical professionals must find new methods to analyze and extract relevant health information. Big Data Analytics in Bioinformatics and Healthcare merges the fields of biology, technology, and medicine in order to present a comprehensive study on the emerging information processing applications necessary in the field of electronic medical record management. Complete with interdisciplinary research resources, this publication is an essential reference source for researchers, practitioners, and students interested in the fields of biological computation, database management, and health information technology, with a special focus on the methodologies and tools to manage massive and complex electronic information.




Applying Machine Learning Techniques to Bioinformatics: Few-Shot and Zero-Shot Methods


Book Description

Why are cutting-edge data science techniques such as bioinformatics, few-shot learning, and zero-shot learning underutilized in the world of biological sciences?. In a rapidly advancing field, the failure to harness the full potential of these disciplines limits scientistsÂ’ ability to unlock critical insights into biological systems, personalized medicine, and biomarker identification. This untapped potential hinders progress and limits our capacity to tackle complex biological challenges. The solution to this issue lies within the pages of Applying Machine Learning Techniques to Bioinformatics. This book serves as a powerful resource, offering a comprehensive analysis of how these emerging disciplines can be effectively applied to the realm of biological research. By addressing these challenges and providing in-depth case studies and practical implementations, the book equips researchers, scientists, and curious minds with the knowledge and techniques needed to navigate the ever-changing landscape of bioinformatics and machine learning within the biological sciences.




Biomedical Engineering: Concepts, Methodologies, Tools, and Applications


Book Description

Technological tools and computational techniques have enhanced the healthcare industry. These advancements have led to significant progress and novel opportunities for biomedical engineering. Biomedical Engineering: Concepts, Methodologies, Tools, and Applications is an authoritative reference source for emerging scholarly research on trends, techniques, and future directions in the field of biomedical engineering technologies. Highlighting a comprehensive range of topics such as nanotechnology, biomaterials, and robotics, this multi-volume book is ideally designed for medical practitioners, professionals, students, engineers, and researchers interested in the latest developments in biomedical technology.




Handbook of Research on Computational Intelligence Applications in Bioinformatics


Book Description

Developments in the areas of biology and bioinformatics are continuously evolving and creating a plethora of data that needs to be analyzed and decrypted. Since it can be difficult to decipher the multitudes of data within these areas, new computational techniques and tools are being employed to assist researchers in their findings. The Handbook of Research on Computational Intelligence Applications in Bioinformatics examines emergent research in handling real-world problems through the application of various computation technologies and techniques. Featuring theoretical concepts and best practices in the areas of computational intelligence, artificial intelligence, big data, and bio-inspired computing, this publication is a critical reference source for graduate students, professionals, academics, and researchers.




Nature-Inspired Intelligent Techniques for Solving Biomedical Engineering Problems


Book Description

Technological tools and computational techniques have enhanced the healthcare industry. These advancements have led to significant progress and novel opportunities for biomedical engineering. Nature-Inspired Intelligent Techniques for Solving Biomedical Engineering Problems is a pivotal reference source for emerging scholarly research on trends and techniques in the utilization of nature-inspired approaches in biomedical engineering. Featuring extensive coverage on relevant areas such as artificial intelligence, clinical decision support systems, and swarm intelligence, this publication is an ideal resource for medical practitioners, professionals, students, engineers, and researchers interested in the latest developments in biomedical technologies.




Biomedical and Clinical Engineering for Healthcare Advancement


Book Description

The rapid development of new technologies has created a lasting impact in the healthcare sector during the past decades. Due to this influence, potential clinical problems have decreased while the quality of healthcare delivery and overall user friendliness has increased and contributed to cost-effective healthcare systems. Biomedical and Clinical Engineering for Healthcare Advancement is an essential reference source that discusses growth in healthcare applications driven by the adoption of new technologies, as well as the expansion of machine learning algorithms for clinical decision making. It focuses on combining vision, motion, data acquisition, and automated control to accelerate the development of affordable and portable medical devices. Featuring research on topics such as artificial intelligence, drug delivery, and retinal imaging, this book is ideally designed for healthcare professionals, biomedical engineers, biomedical professionals, clinicians, hospital directors, physicians, medical students, and clinical researchers.




Deep Neural Networks for Multimodal Imaging and Biomedical Applications


Book Description

The field of healthcare is seeing a rapid expansion of technological advancement within current medical practices. The implementation of technologies including neural networks, multi-model imaging, genetic algorithms, and soft computing are assisting in predicting and identifying diseases, diagnosing cancer, and the examination of cells. Implementing these biomedical technologies remains a challenge for hospitals worldwide, creating a need for research on the specific applications of these computational techniques. Deep Neural Networks for Multimodal Imaging and Biomedical Applications provides research exploring the theoretical and practical aspects of emerging data computing methods and imaging techniques within healthcare and biomedicine. The publication provides a complete set of information in a single module starting from developing deep neural networks to predicting disease by employing multi-modal imaging. Featuring coverage on a broad range of topics such as prediction models, edge computing, and quantitative measurements, this book is ideally designed for researchers, academicians, physicians, IT consultants, medical software developers, practitioners, policymakers, scholars, and students seeking current research on biomedical advancements and developing computational methods in healthcare.




Attractors and Higher Dimensions in Population and Molecular Biology: Emerging Research and Opportunities


Book Description

In studying biology, one of the more difficult factors to predict is how parentsÂ’ attributes will affect their children and how those children will affect their own children. Organizing and calculating those vast statistics can become extremely tedious without the proper mathematical and reproductive knowledge. Attractors and Higher Dimensions in Population and Molecular Biology: Emerging Research and Opportunities is a collection of innovative research on the methods and applications of population logistics. While highlighting topics including gene analysis, crossbreeding, and reproduction, this book is ideally designed for academics, researchers, biologists, and mathematicians seeking current research on modeling the reproduction process of a biological population.




Applications of Parallel Data Processing for Biomedical Imaging


Book Description

Despite the remarkable progress witnessed in the last decade in big data utilization and parallel processing techniques, a persistent disparity exists between the capabilities of computer-aided diagnosis systems and the intricacies of practical healthcare scenarios. This disconnection is particularly evident in the complex landscape of artificial intelligence (AI) and IoT innovations within the biomedical realm. The need to bridge this gap and explore the untapped potential in healthcare and biomedical applications has never been more crucial. As we navigate through these challenges, Applications of Parallel Data Processing for Biomedical Imaging offers insights and solutions to reshape the future of biomedical research. The objective of Applications of Parallel Data Processing for Biomedical Imaging is to bring together researchers from both the computer science and biomedical research communities. By showcasing state-of-the-art deep learning and large data analysis technologies, the book provides a platform for the cross-pollination of ideas between AI-based and traditional methodologies. The collaborative effort seeks to have a substantial impact on data mining, AI, computer vision, biomedical research, healthcare engineering, and other related fields. This interdisciplinary approach positions the book as a cornerstone for scholars, professors, and professionals working in software and medical fields, catering to both graduate and undergraduate students eager to explore the evolving landscape of parallel computing, artificial intelligence, and their applications in biomedical research.