Translational Bioinformatics in Healthcare and Medicine


Book Description

Translational Bioinformatics in Healthcare and Medicine offers an overview of main principles of bioinformatics, biological databases, clinical informatics, health informatics, viroinformatics and real-case applications of translational bioinformatics in healthcare. Written by experts from both technology and clinical sides, the content brings together essential knowledge to make the best of recent advancements of the field. The book discusses topics such as next generation sequence analysis, genomics in clinical care, IoT applications, blockchain technology, patient centered interoperability of EHR, health data mining, and translational bioinformatics methods for drug discovery and drug repurposing. In addition, it discusses the role of bioinformatics in cancer research and viroinformatics approaches to counter viral diseases through informatics. This is a valuable resource for bioinformaticians, clinicians, healthcare professionals, graduate students and several members of biomedical field who are interested in learning more about how bioinformatics can impact in their research and practice. - Covers recent advancements in translational bioinformatics and its healthcare applications - Discusses integrative and multidisciplinary approaches to U-healthcare systems development and management - Bridges the gap among various knowledge domains in the field, integrating both technological and clinical knowledge into practical content




Bioinformatics Basics


Book Description

Every researcher in genomics and proteomics now has access to public domain databases containing literally billions of data entries. However, without the right analytical tools, and an understanding of the biological significance of the data, cataloging and interpreting the molecular evolutionary processes buried in those databases is difficult, if




Translational Bioinformatics Applications in Healthcare


Book Description

Translational bioinformatics (TBI) involves development of storage, analytics, and advanced computational methods to harvest knowledge from voluminous biomedical and genomic data into 4P healthcare (proactive, predictive, preventive, and participatory). Translational Bioinformatics Applications in Healthcare offers a detailed overview on concepts of TBI, biological and clinical databases, clinical informatics, and pertinent real-case applications. It further illustrates recent advancements, tools, techniques, and applications of TBI in healthcare, including Internet of Things (IoT) potential, toxin databases, medical image analysis and telemedicine applications, analytics of COVID-19 CT images, viroinformatics and viral diseases, and COVID-19–related research. Covers recent technologies such as Blockchain, IoT, and Big data analytics in bioinformatics Presents the role of translational bioinformatic methods in the field of viroinformatics, as well as in drug development and repurposing Includes translational healthcare and NGS for clinical applications Illustrates translational medicine systems and their applications in better healthcare Explores medical image analysis with focus on CT images and novel coronavirus disease detection Aimed at researchers and graduate students in computational biology, data mining and knowledge discovery, algorithms and complexity, and interdisciplinary fields of studies, including bioinformatics, health-informatics, biostatistics, biomedical engineering, and viroinformatics. Khalid Raza is an Assistant Professor, the Department of Computer Science, Jamia Millia Islamia (Central University), New Delhi. His research interests include translational bioinformatics, computational intelligence methods and its applications in bioinformatics, viroinformatics, and health informatics. Nilanjan Dey is an Associate Professor, the Department of Computer Science and Engineering, JIS University, Kolkata, India. His research interests include medical imaging, machine learning, computer-aided diagnosis, and data mining.




Rough-Fuzzy Pattern Recognition


Book Description

Learn how to apply rough-fuzzy computing techniques to solve problems in bioinformatics and medical image processing Emphasizing applications in bioinformatics and medical image processing, this text offers a clear framework that enables readers to take advantage of the latest rough-fuzzy computing techniques to build working pattern recognition models. The authors explain step by step how to integrate rough sets with fuzzy sets in order to best manage the uncertainties in mining large data sets. Chapters are logically organized according to the major phases of pattern recognition systems development, making it easier to master such tasks as classification, clustering, and feature selection. Rough-Fuzzy Pattern Recognition examines the important underlying theory as well as algorithms and applications, helping readers see the connections between theory and practice. The first chapter provides an introduction to pattern recognition and data mining, including the key challenges of working with high-dimensional, real-life data sets. Next, the authors explore such topics and issues as: Soft computing in pattern recognition and data mining A mathematical framework for generalized rough sets, incorporating the concept of fuzziness in defining the granules as well as the set Selection of non-redundant and relevant features of real-valued data sets Selection of the minimum set of basis strings with maximum information for amino acid sequence analysis Segmentation of brain MR images for visualization of human tissues Numerous examples and case studies help readers better understand how pattern recognition models are developed and used in practice. This text—covering the latest findings as well as directions for future research—is recommended for both students and practitioners working in systems design, pattern recognition, image analysis, data mining, bioinformatics, soft computing, and computational intelligence.




Bioinformatics and Medical Applications


Book Description

BIOINFORMATICS AND MEDICAL APPLICATIONS The main topics addressed in this book are big data analytics problems in bioinformatics research such as microarray data analysis, sequence analysis, genomics-based analytics, disease network analysis, techniques for big data analytics, and health information technology. Bioinformatics and Medical Applications: Big Data Using Deep Learning Algorithms analyses massive biological datasets using computational approaches and the latest cutting-edge technologies to capture and interpret biological data. The book delivers various bioinformatics computational methods used to identify diseases at an early stage by assembling cutting-edge resources into a single collection designed to enlighten the reader on topics focusing on computer science, mathematics, and biology. In modern biology and medicine, bioinformatics is critical for data management. This book explains the bioinformatician’s important tools and examines how they are used to evaluate biological data and advance disease knowledge. The editors have curated a distinguished group of perceptive and concise chapters that presents the current state of medical treatments and systems and offers emerging solutions for a more personalized approach to healthcare. Applying deep learning techniques for data-driven solutions in health information allows automated analysis whose method can be more advantageous in supporting the problems arising from medical and health-related information. Audience The primary audience for the book includes specialists, researchers, postgraduates, designers, experts, and engineers, who are occupied with biometric research and security-related issues.




Java for Bioinformatics and Biomedical Applications


Book Description

Medical science and practice have undergone fundamental changes in the last 5 years, as large-scale genome projects have resulted in the sequencing of a number of important microbial, plant and animal genomes. This book aims to combine industry standard software engineering and design principles with genomics, bioinformatics and cancer research. Rather than an exercise in learning a programming platform, the text focuses on useful analytical tools for the scientific community.




Probabilistic Modeling in Bioinformatics and Medical Informatics


Book Description

Probabilistic Modelling in Bioinformatics and Medical Informatics has been written for researchers and students in statistics, machine learning, and the biological sciences. The first part of this book provides a self-contained introduction to the methodology of Bayesian networks. The following parts demonstrate how these methods are applied in bioinformatics and medical informatics. All three fields - the methodology of probabilistic modeling, bioinformatics, and medical informatics - are evolving very quickly. The text should therefore be seen as an introduction, offering both elementary tutorials as well as more advanced applications and case studies.




Bioinformatics for Biomedical Science and Clinical Applications


Book Description

Contemporary biomedical and clinical research is undergoing constant development thanks to the rapid advancement of various high throughput technologies at the DNA, RNA and protein levels. These technologies can generate vast amounts of raw data, making bioinformatics methodologies essential in their use for basic biomedical and clinical applications. Bioinformatics for biomedical science and clinical applications demonstrates what these cutting-edge technologies can do and examines how to design an appropriate study, including how to deal with data and address specific clinical questions. The first two chapters consider Bioinformatics and analysis of the human genome. The subsequent three chapters cover the introduction of Transcriptomics, Proteomics and Systems biomedical science. The remaining chapters move on to critical developments, clinical information and conclude with domain knowledge and adaptivity.




Structural Bioinformatics: Applications in Preclinical Drug Discovery Process


Book Description

This book reviews the advances and challenges of structure-based drug design in the preclinical drug discovery process, addressing various diseases, including malaria, tuberculosis and cancer. Written by internationally recognized researchers, this edited book discusses how the application of the various in-silico techniques, such as molecular docking, virtual screening, pharmacophore modeling, molecular dynamics simulations, and residue interaction networks offers insights into pharmacologically active novel molecular entities. It presents a clear concept of the molecular mechanism of different drug targets and explores methods to help understand drug resistance. In addition, it includes chapters dedicated to natural-product- derived medicines, combinatorial drug discovery, the CryoEM technique for structure-based drug design and big data in drug discovery. The book offers an invaluable resource for graduate and postgraduate students, as well as for researchers in academic and industrial laboratories working in the areas of chemoinformatics, medicinal and pharmaceutical chemistry and pharmacoinformatics.




Application of Bioinformatics in Cancers


Book Description

This collection of 25 research papers comprised of 22 original articles and 3 reviews is brought together from international leaders in bioinformatics and biostatistics. The collection highlights recent computational advances that improve the ability to analyze highly complex data sets to identify factors critical to cancer biology. Novel deep learning algorithms represent an emerging and highly valuable approach for collecting, characterizing and predicting clinical outcomes data. The collection highlights several of these approaches that are likely to become the foundation of research and clinical practice in the future. In fact, many of these technologies reveal new insights about basic cancer mechanisms by integrating data sets and structures that were previously immiscible. Accordingly, the series presented here bring forward a wide range of artificial intelligence approaches and statistical methods that can be applied to imaging and genomics data sets to identify previously unrecognized features that are critical for cancer. Our hope is that these articles will serve as a foundation for future research as the field of cancer biology transitions to integrating electronic health record, imaging, genomics and other complex datasets in order to develop new strategies that improve the overall health of individual patients.