Bioinformatics and Transcriptomics. Generation of a p53 Interactome


Book Description

Scientific Study from the year 2017 in the subject Medicine - Biomedical Engineering, University of Salford (School of Environmental and Life Sciences , ELLS), course: MSc Biomedical Science, language: English, abstract: Bioinformatics and computational biology provide us with the tools to collect, curate and analyse biological data and have seen increased usage in medicine and other scientific fields over the years. One of those areas of medicine where it is widely applied is in cancer research and chemotherapy. This report seeks to explore the properties and interactions of one gene, p53, which can be key to cancer research. This gene encodes the p53 protein which works by stopping cell cycle progression and hence preventing uncontrolled cell proliferation. It is also involved in activating the transcription of DNA repair proteins and inducing apoptosis. The interactions between p53 and a host of other genes involved in the regulation of transcription was studied with the aid of several databases; NCBI Gene ,MotifMap, ChampionChip ,TRED, STRING and a visualization software , Cytoscape, with which a Boolean model was produced from ten p53 interactions. p21 is a very important gene which is regulated by p53 in its transcriptional activation and tumour suppressing function .A study of some of the properties of p21 (with NCBI Gene) and a comparison of the of the number of transcription factors which regulate p21 was done using MofiMap, ChampionChip and TRED and found to be higher for ChampionChip which provided a more extensive search than MotifMap. Meanwhile TRED produced no results for gene search. In conclusion, the report demonstrated that the usually very complex network of p53 interactions can be simplified by a Boolean model to show the transcription factors regulated by p53 and the nature of interaction (activation or inhibition). Understanding these pathways of interactions might be very useful in cancer research and treatment.




Application of Bioinformatics in Cancers


Book Description

This collection of 25 research papers comprised of 22 original articles and 3 reviews is brought together from international leaders in bioinformatics and biostatistics. The collection highlights recent computational advances that improve the ability to analyze highly complex data sets to identify factors critical to cancer biology. Novel deep learning algorithms represent an emerging and highly valuable approach for collecting, characterizing and predicting clinical outcomes data. The collection highlights several of these approaches that are likely to become the foundation of research and clinical practice in the future. In fact, many of these technologies reveal new insights about basic cancer mechanisms by integrating data sets and structures that were previously immiscible. Accordingly, the series presented here bring forward a wide range of artificial intelligence approaches and statistical methods that can be applied to imaging and genomics data sets to identify previously unrecognized features that are critical for cancer. Our hope is that these articles will serve as a foundation for future research as the field of cancer biology transitions to integrating electronic health record, imaging, genomics and other complex datasets in order to develop new strategies that improve the overall health of individual patients.




Bioinformatics for Biomedical Science and Clinical Applications


Book Description

Contemporary biomedical and clinical research is undergoing constant development thanks to the rapid advancement of various high throughput technologies at the DNA, RNA and protein levels. These technologies can generate vast amounts of raw data, making bioinformatics methodologies essential in their use for basic biomedical and clinical applications. Bioinformatics for biomedical science and clinical applications demonstrates what these cutting-edge technologies can do and examines how to design an appropriate study, including how to deal with data and address specific clinical questions. The first two chapters consider Bioinformatics and analysis of the human genome. The subsequent three chapters cover the introduction of Transcriptomics, Proteomics and Systems biomedical science. The remaining chapters move on to critical developments, clinical information and conclude with domain knowledge and adaptivity.




Handbook of Systems Biology


Book Description

This book provides an entry point into Systems Biology for researchers in genetics, molecular biology, cell biology, microbiology and biomedical science to understand the key concepts to expanding their work. Chapters organized around broader themes of Organelles and Organisms, Systems Properties of Biological Processes, Cellular Networks, and Systems Biology and Disease discuss the development of concepts, the current applications, and the future prospects. Emphasis is placed on concepts and insights into the multi-disciplinary nature of the field as well as the importance of systems biology in human biological research. Technology, being an extremely important aspect of scientific progress overall, and in the creation of new fields in particular, is discussed in 'boxes' within each chapter to relate to appropriate topics. - 2013 Honorable Mention for Single Volume Reference in Science from the Association of American Publishers' PROSE Awards - Emphasizes the interdisciplinary nature of systems biology with contributions from leaders in a variety of disciplines - Includes the latest research developments in human and animal models to assist with translational research - Presents biological and computational aspects of the science side-by-side to facilitate collaboration between computational and biological researchers




Basics of Bioinformatics


Book Description

This book outlines 11 courses and 15 research topics in bioinformatics, based on curriculums and talks in a graduate summer school on bioinformatics that was held in Tsinghua University. The courses include: Basics for Bioinformatics, Basic Statistics for Bioinformatics, Topics in Computational Genomics, Statistical Methods in Bioinformatics, Algorithms in Computational Biology, Multivariate Statistical Methods in Bioinformatics Research, Association Analysis for Human Diseases: Methods and Examples, Data Mining and Knowledge Discovery Methods with Case Examples, Applied Bioinformatics Tools, Foundations for the Study of Structure and Function of Proteins, Computational Systems Biology Approaches for Deciphering Traditional Chinese Medicine, and Advanced Topics in Bioinformatics and Computational Biology. This book can serve as not only a primer for beginners in bioinformatics, but also a highly summarized yet systematic reference book for researchers in this field. Rui Jiang and Xuegong Zhang are both professors at the Department of Automation, Tsinghua University, China. Professor Michael Q. Zhang works at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.




Encyclopedia of Bioinformatics and Computational Biology


Book Description

Encyclopedia of Bioinformatics and Computational Biology: ABC of Bioinformatics, Three Volume Set combines elements of computer science, information technology, mathematics, statistics and biotechnology, providing the methodology and in silico solutions to mine biological data and processes. The book covers Theory, Topics and Applications, with a special focus on Integrative –omics and Systems Biology. The theoretical, methodological underpinnings of BCB, including phylogeny are covered, as are more current areas of focus, such as translational bioinformatics, cheminformatics, and environmental informatics. Finally, Applications provide guidance for commonly asked questions. This major reference work spans basic and cutting-edge methodologies authored by leaders in the field, providing an invaluable resource for students, scientists, professionals in research institutes, and a broad swath of researchers in biotechnology and the biomedical and pharmaceutical industries. Brings together information from computer science, information technology, mathematics, statistics and biotechnology Written and reviewed by leading experts in the field, providing a unique and authoritative resource Focuses on the main theoretical and methodological concepts before expanding on specific topics and applications Includes interactive images, multimedia tools and crosslinking to further resources and databases




MicroRNA Cancer Regulation


Book Description

This edited reflects the current state of knowledge about the role of microRNAs in the formation and progression of solid tumours. The main focus lies on computational methods and applications, together with cutting edge experimental techniques that are used to approach all aspects of microRNA regulation in cancer. We are sure that the emergence of high-throughput quantitative techniques will make this integrative approach absolutely necessary in the near future. This book will be a resource for researchers starting out with cancer microRNA research, but is also intended for the experienced researcher who wants to incorporate concepts and tools from systems biology and bioinformatics into his work. Bioinformaticians and modellers are provided with a general perspective on microRNA biology in cancer, and the state-of-the-art in computational microRNA biology.




Protein-Protein Interactions


Book Description

Proteins are indispensable players in virtually all biological events. The functions of proteins are coordinated through intricate regulatory networks of transient protein-protein interactions (PPIs). To predict and/or study PPIs, a wide variety of techniques have been developed over the last several decades. Many in vitro and in vivo assays have been implemented to explore the mechanism of these ubiquitous interactions. However, despite significant advances in these experimental approaches, many limitations exist such as false-positives/false-negatives, difficulty in obtaining crystal structures of proteins, challenges in the detection of transient PPI, among others. To overcome these limitations, many computational approaches have been developed which are becoming increasingly widely used to facilitate the investigation of PPIs. This book has gathered an ensemble of experts in the field, in 22 chapters, which have been broadly categorized into Computational Approaches, Experimental Approaches, and Others.




Protein-Protein Interaction Networks


Book Description

This volume explores techniques that study interactions between proteins in different species, and combines them with context-specific data, analysis of omics datasets, and assembles individual interactions into higher-order semantic units, i.e., protein complexes and functional modules. The chapters in this book cover computational methods that solve diverse tasks such as the prediction of functional protein-protein interactions; the alignment-based comparison of interaction networks by SANA; using the RaptorX-ComplexContact webserver to predict inter-protein residue-residue contacts; the docking of alternative confirmations of proteins participating in binary interactions and the visually-guided selection of a docking model using COZOID; the detection of novel functional units by KeyPathwayMiner and how PathClass can use such de novo pathways to classify breast cancer subtypes. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary hardware- and software, step-by-step, readily reproducible computational protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and comprehensive, Protein-Protein Interaction Networks: Methods and Protocols is a valuable resource for both novice and expert researchers who are interested in learning more about this evolving field.




A Practical Guide To Cancer Systems Biology


Book Description

Systems biology combines computational and experimental approaches to analyze complex biological systems and focuses on understanding functional activities from a systems-wide perspective. It provides an iterative process of experimental measurements, data analysis, and computational simulation to model biological behavior. This book provides explained protocols for high-throughput experiments and computational analysis procedures central to cancer systems biology research and education. Readers will learn how to generate and analyze high-throughput data, therapeutic target protein structure modeling and docking simulation for drug discovery. This is the first practical guide for students and scientists who wish to become systems biologists or utilize the approach for cancer research.