Bioinformatics of Non-Coding RNAs with Applications to Biomedicine: Recent Advances and Open Challenges


Book Description

The recent discovery of small and long non-coding RNAs (ncRNAs) has represented a major breakthrough in the life sciences. These molecules add a new layer of complexity to biological processes and pathways by revealing a sophisticated and dynamic interconnected system whose structure is just beginning to be uncovered. Genetic and epigenetic aberrations affecting ncRNA gene sequences and their expression have been linked to a variety of pathological conditions, including cancer, cardiovascular and neurological diseases. Latest advances in the development of high throughput analysis techniques may help to shed light on the complex regulatory mechanisms in which ncRNA molecules are involved. Bioinformatics tools constitute a unique and essential resource for non-coding RNA studies, providing a powerful technology to organize, integrate and analyze the huge amount of data produced daily by wet biology experiments in order to discover patterns, identify relationships among heterogeneous biological elements and formulate functional hypotheses. This Research Topic reviews current knowledge, introduces novel methods, and discusses open challenges of this exciting and innovative field in connection with the most important biomedical applications. It consists of four reviews and six original research and methods articles, spanning the full scope of the Research Topic.




Evolution of Translational Omics


Book Description

Technologies collectively called omics enable simultaneous measurement of an enormous number of biomolecules; for example, genomics investigates thousands of DNA sequences, and proteomics examines large numbers of proteins. Scientists are using these technologies to develop innovative tests to detect disease and to predict a patient's likelihood of responding to specific drugs. Following a recent case involving premature use of omics-based tests in cancer clinical trials at Duke University, the NCI requested that the IOM establish a committee to recommend ways to strengthen omics-based test development and evaluation. This report identifies best practices to enhance development, evaluation, and translation of omics-based tests while simultaneously reinforcing steps to ensure that these tests are appropriately assessed for scientific validity before they are used to guide patient treatment in clinical trials.




Bioinformatics for High Throughput Sequencing


Book Description

Next generation sequencing is revolutionizing molecular biology. Owing to this new technology it is now possible to carry out a panoply of experiments at an unprecedented low cost and high speed. These go from sequencing whole genomes, transcriptomes and small non-coding RNAs to description of methylated regions, identification protein – DNA interaction sites and detection of structural variation. The generation of gigabases of sequence information for each of this huge bandwidth of applications in just a few days makes the development of bioinformatics applications for next generation sequencing data analysis as urgent as challenging.




Small Non-Coding RNAs


Book Description

This volume contains state-of-the-art methods tackling all aspects of small non-coding RNAs biology. Small Non-Coding RNAs: Methods and Protocols guides readers through customized dedicated protocols and technologies that will be of valuable help to all those willing to contribute deciphering the numerous functions of small non-coding RNAs. Written in the highly successful Methods of Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols and key tips on troubles troubleshooting and avoiding known pitfalls. Instructive and practical, Small Non-Coding RNAs: Methods and Protocols reaches out to biochemists, cellular and molecular biologists already working in the field of RNA biology and to those just starting to study small non-coding RNAs.




Emerging Trends in Computational Biology, Bioinformatics, and Systems Biology


Book Description

Emerging Trends in Computational Biology, Bioinformatics, and Systems Biology discusses the latest developments in all aspects of computational biology, bioinformatics, and systems biology and the application of data-analytics and algorithms, mathematical modeling, and simu- lation techniques. • Discusses the development and application of data-analytical and theoretical methods, mathematical modeling, and computational simulation techniques to the study of biological and behavioral systems, including applications in cancer research, computational intelligence and drug design, high-performance computing, and biology, as well as cloud and grid computing for the storage and access of big data sets. • Presents a systematic approach for storing, retrieving, organizing, and analyzing biological data using software tools with applications to general principles of DNA/RNA structure, bioinformatics and applications, genomes, protein structure, and modeling and classification, as well as microarray analysis. • Provides a systems biology perspective, including general guidelines and techniques for obtaining, integrating, and analyzing complex data sets from multiple experimental sources using computational tools and software. Topics covered include phenomics, genomics, epigenomics/epigenetics, metabolomics, cell cycle and checkpoint control, and systems biology and vaccination research. • Explains how to effectively harness the power of Big Data tools when data sets are so large and complex that it is difficult to process them using conventional database management systems or traditional data processing applications. - Discusses the development and application of data-analytical and theoretical methods, mathematical modeling and computational simulation techniques to the study of biological and behavioral systems. - Presents a systematic approach for storing, retrieving, organizing and analyzing biological data using software tools with applications. - Provides a systems biology perspective including general guidelines and techniques for obtaining, integrating and analyzing complex data sets from multiple experimental sources using computational tools and software.




RNA Technologies and Their Applications


Book Description

RNA technologies are the driving forces of modern medicine and biotechnology. They combine the fields of biochemistry, chemistry, molecular biology, cell biology, physics, nanotechnology and bioinformatics. The combination of these topics is set to revolutionize the medicine of tomorrow. After more than 15 years of extensive research in the field of RNA technologies, the first therapeutics are ready to reach the first patients. Thus we are witnessing the birth of a very exciting time in the development of molecular medicine, which will be based on the methods of RNA technologies. This volume is the first of a series. It covers various aspects of RNA interference and microRNAs, although antisense RNA applications, hammerhead ribozyme structure and function as well as non-coding RNAs are also discussed. The authors are internationally highly respected experts in the field of RNA technologies.




Deep Learning for Biomedical Applications


Book Description

This book is a detailed reference on biomedical applications using Deep Learning. Because Deep Learning is an important actor shaping the future of Artificial Intelligence, its specific and innovative solutions for both medical and biomedical are very critical. This book provides a recent view of research works on essential, and advanced topics. The book offers detailed information on the application of Deep Learning for solving biomedical problems. It focuses on different types of data (i.e. raw data, signal-time series, medical images) to enable readers to understand the effectiveness and the potential. It includes topics such as disease diagnosis, image processing perspectives, and even genomics. It takes the reader through different sides of Deep Learning oriented solutions. The specific and innovative solutions covered in this book for both medical and biomedical applications are critical to scientists, researchers, practitioners, professionals, and educations who are working in the context of the topics.




Precision Public Health


Book Description

Precision Public Health is a new and rapidly evolving field, that examines the application of new technologies to public health policy and practice. It draws on a broad range of disciplines including genomics, spatial data, data linkage, epidemiology, health informatics, big data, predictive analytics and communications. The hope is that these new technologies will strengthen preventive health, improve access to health care, and reach disadvantaged populations in all areas of the world. But what are the downsides and what are the risks, and how can we ensure the benefits flow to those population groups most in need, rather than simply to those individuals who can afford to pay? This is the first collection of theoretical frameworks, analyses of empirical data, and case studies to be assembled on this topic, published to stimulate debate and promote collaborative work.




Advances in Bioinformatics and Computational Biology


Book Description

This book constitutes the refereed proceedings of the Brazilian Symposium on Bioinformatics, BSB 2020, held in São Paulo, Brazil, in November 2020. Due to COVID-19 pandemic the conference was held virtually The 20 revised full papers and 5 short papers were carefully reviewed and selected from 45 submissions. The papers address a broad range of current topics in computational biology and bioinformatics.




Long Non-coding RNAs in Human Disease


Book Description

This volume focuses on the roles of long non-coding RNAs (lncRNAs) in contexts ranging from human cancers to cardiovascular disease and ageing. The role of lncRNAs in X-inactivation and those lncRNAs derived from pseudogenes, past retroelements integrated within the human genome, as well as the role these pseudogene-derived lncRNAs play in cancer development are discussed in detail. Further, the book examines the function of lncRNAs in diseases such as diabetes, in smooth muscle formation, and in the modulation of nuclear receptors, as well as in connection with perspectives on the development of personalized therapeutics. It offers an appealing and insightful resource for scientists and clinicians alike.